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Abstract—A signal dependent noise called speckle is an 

inherent property of medical ultrasound (US) imaging modality, 

satellite aperture radar imaging (SAR) and optical coherence 

tomography (OCT) imaging. This speckle is multiplicative in 

nature and degrades the resolution, speed and accuracy of all the 

post processing tasks on the US/SAR/OCT imaging modalities. In 

this paper, a novel method has been proposed to reduce the 

speckle by applying a new combinational PDE which exhibits the 

properties of both second and fourth order partial differential 

equations (PDEs). The new PDE is applied in Laplacian pyramid 

domain to achieve better speckle reduction with edge 

preservation and feature enhancement. 
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I.  INTRODUCTION  

The usefulness of US/SAR/OCT imaging are 

degraded by a signal dependent noise called speckle which is 

multiplicative in nature. Speckle is a granular pattern formed 

due to constructive and destructive coherent interferences of 

backscattered echoes from the scatterers that are typically 

much smaller than the spatial resolution (i.e., wavelength of an 

ultrasound wave) of medical US system [1].In medical 

diagnosis, the presence of speckle reduces the human 

interpretation ability and may leads to wrong diagnosis. So 

speckle noise reduction is an essential pre-processing step, and 

should be filtered out [2-5], without affecting important 

features of the image. 

   

II. BACKGROUND  

A. PDE in Image Processing 

PDEs usage in image processing has grown considerably 
over the past two to three decades. The basic idea behind this 
frame work is to deform an image, a curve or a surface and to 
approach the expected result as a solution to this equation. 
Image denoising methods based on PDE utilize the physical 
process of diffusion to smooth noisy images. Image denoising 
methods utilize the physical process of diffusion [6] to smooth 
noisy images. Diffusion is generally defined as a physical 
process that equilibrates concentration differences without 
creating or destroying mass. By using Ficks law [6], 

IDj  .     (1) 

Here, I   is concentration gradient that causes a flux j
.
 

This gradient I  and j  are related by the diffusion tensor D , 

B. Second and Fourth order PDEs 

Since 1990, many researchers have studied second order 
PDE based methods for speckle reduction [3-8] , that is 
commonly given by,  
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Where  , .  are the gradient and the divergence 

operators, ║ denotes the magnitude, )(xc is the diffusion 

coefficient and I0 is the initial image. Many choices are 

available for )(xc  in the literature [1-8]. But using (2) for 

smoothing an image brings in “blocky effects” [4]. 

To avoid these blocky effects and to achieve good trade-

off between noise removal and edge preservation, Fourth order 

PDE has been proposed [9-11] as, 
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Fourth-order PDE in image denoising removes the 

blocky effects that made by second-order nonlinear diffusion 

equation; however, it requires more number of iterations to 

converge and leaves the processed images with isolated black 

and white speckles.

 

C. Laplacian Pyramid 

 The image pyramid is a data structure designed 

to support efficient scaled convolution through reduced image 

representation. A general structure of pyramid transform 

consists of decomposition and reconstruction stages and can 

be described by approximation and interpolation filtering. The 

basic classifications of pyramids are: Gaussian pyramid and 

Laplacian Pyramid. . A specific pyramid is determined by its 
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particular decimation factor, approximation and interpolation 

filters. In the Laplacian pyramid, two operators such as 

REDUCE and EXPAND are commonly used. The REDUCE 

operator performs a two-dimensional (2-D) low pass filtering 

followed by a sub-sampling by a factor of two in both 

directions. The EXPAND operator enlarges an image to twice 

the size in both directions by up-sampling (i.e., insertion of 

zeros) and a low pass filtering [1]. This filtering is followed by 

a multiplication by a factor of four, which is necessary to 

maintain the average intensity being reduced by the insertion 

of zeros. 

 The Gaussian (G) and Laplacian (L)  pyramids 

are defined as: 
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 Reconstruction of an image from its Laplacian pyramid 

can be achieved by simply reversing the decomposition 

steps[12]. 

III. DEVELOPMENT OF COMBINATIONAL PDE 

 The Fick‟s law in (1) can be approximated as a 

super flux with near equilibrium as, 

),(),( 2 txIDtxj q

q

q     (5)  

For an image system it can be expressed as, 
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where  ,  are gradient and Laplacian operators, )( Ic   is 

diffusion coefficient. Thus, the combinational PDE consumes 

minimum number of iterations to converge and also 

predominantly reduces the blocky effects caused by second 

order anisotropic diffusion as it carries mixed order.   

A. Combinational PDE in Pyramid Domain 

Pyramid transform separates information into frequency 

bands. As speckle noise has high frequency, it mainly resides 

in fine scale corresponds to low pyramid layer and it is 

negligible in the coarser scale corresponds to the higher 

pyramid layer. Algorithm used in the pyramid domain is as 

follows; 
 

Step 1: Decompose an image into its pyramid structure (3 layers) 

of decreasing frequencies 

Step 2: Filter each band pass layer of Laplacian pyramid using 

combinational PDE 

Step 3: Estimate gradient threshold in each layer „l‟ using median 

estimator [1], 
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Step 4: Use Mean absolute error (MAE) between two adjacent 

diffusion steps as a stopping criteria to stop the iterations, 
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Step 5: Reconstruct the image from its Laplacian pyramid by 

simply reversing the decomposition steps 

 

B. Stability Criteria 

The convergence and stability of MAE [13] is verified by 

applying combinational PDE to three band pass layers and 

MAE value has been observed and it decreases exponentially 

with the number of iterations as shown in Fig.1. 
 

C. Numerical Aspects 

A finite difference scheme is preferred because of its easy 

implementation to solve the diffusion equation. The image 

gradients are obtained from directional differences using 

symmetric boundary conditions.
 

The average of the four 

squared directional differences is used to discretize gradient 

and Laplacian operators.
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Thus the combinational PDE can be expressed as, 
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Fig.1. Mean Absolute Error – Stability and convergence 
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Where c is diffusion coefficient and λ is the time step that 

controls the swiftness of diffusion process. The Neumann 

boundary condition with an assumption that the values beyond 

an image border are equivalent to values on the border is 

utilized to solve the combinational PDE. The time step [14] is 

chosen as 25.0 . 

IV. RESULT AND CONCLUSION 

 Performance improvement of the proposed 

methods is measured through three metrics [8, 15,16]; the 

Mean squared error (MSE), Edge preservation index (EPI) and 

Structural similarity index (SSI). 

TABLE I.  PERFORMANCE METRICS 

Measure Definition Parameters 

MSE 
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 The performance of the proposed CPDE method is 

evaluated using synthetic image and simulated phantom. The 

performance is compared with LPND [1], NLMS [17], FBLF 

[18] methods. The results are shown in Fig.2 and Fig.3.The 

performance measures are listed in Table.II. 

TABLE II.  PERFORMANCE COMPARISON 

Methods 
Synthetic Image Simulated Phantom 

MSE EPI SSI MSE EPI SSI 

LPND 56.89 0.682 
0.736 

±0.003 
58.22 0.712 

0.768 
±0.003 

NLMS 54.05 0.784 
0.772 

±0.003 
52.12 0.796 

0.781 

±0.003 

FBLF 43.45 0.798 
0.794 

±0.029 
44.67 0.822 

0.787 

±0.003 

CPDE 28.81 0.899 
0.828 

±0.002 
22.23 0.931 

0.8422

±0.003 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Result on synthetic image (a) Original (b) Noisy (c) LPND (d) NLMS 

(e) FBLF (f) Proposed CPDE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Result on Simulated Phantom (a) Original (b) Noisy (c) LPND                  

(d) NLMS (e) FBLF (f) Proposed CPDE  
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Fig.4.Image profile along 100th row of simulated phntom  (e) Noisy image (f) Proposed CPDE  

 

 In the comparative analysis, proposed CPDE 
provides maximum speckle reduction while preserving 
detailed structures. Enhancement is observed in the areas 
enclosed by red and blue in synthetic image, red and yellow 
in the simulated phantom.  Fig.4 gives performance of 
proposed method in terms of image profile along 100th row 
in the simulated phantom and it clearly justifies the speckle 
reduction ability of proposed CPDE model. 

Thus the proposed combinational PDE based 

diffusion model offers a  tradeoff between second and fourth 

order PDE based methods in terms of avoiding blocky 

effects and number of iterations required to converge. This 

method can be further extended to support all kind of post 

processing methods on US/SAR/OCT imaging like 

registration, segmentation and feature extraction etc., and 

can also be used as a visual enhancement aid to justify the 

diagnosis in the medical field. 
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