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Abstract -This study aimed at developing a new automatic 

segmentation algorithm for human knee cartilage volume 

quantification from MRI. Imaging was performed using a 

3T scanner and a knee coil, and the exam consisted of a 

double echo steady state (DESS) sequence, which 

contrasts cartilage and soft tissues including the synovial 

fluid. The algorithm was developed on MRI 3-D images in 

which the bone–cartilage interface for the femur and tibia 

was segmented by an independent segmentation process, 

giving a parametric surface of the interface. First, the MR 

images 

are resampled in the neighborhood of the bone surface. 

Second, by using texture-analysis techniques optimized by 

filtering, the cartilage is discriminated as a bright and 

homogeneous tissue. This process of excluding soft tissues 

enables the detection of the external boundary of the 

cartilage. Third, a technology based on a Bayesian 

decision criterion enables the automatic separation of the 

cartilage and synovial fluid. Finally, the cartilage volume 

and changes in volume for an individual between visits 

was assessed using the developed technology. Validation 

included first, for nine knee osteoarthritis patients, a 

comparison of the cartilage volume and changes over time 

between the developed automatic system and a validated 

semi-automatic cartilage volume system, and second, for 

five knee osteoarthritis patients, a test–retest procedure. 

Data revealed excellent Pearson correlations and Dice 

similarity coefficients (DSC) for the global knee (r = 0.96,p 

< 0.0001, and median DSC = 0.84), for the femur (r = 0.95, 

p < 0.0001, and median DSC = 0.85), and the tibia (r = 

0.83, p < 0.0001, and median DSC = 0.84). Very good 

similarity between the automatic and semi-automatic 

methods in regard to cartilage loss was also found for the 

global knee (r = 0.76 and p = 0.016) as well as for the 

femur (r = 0.79 and p = 0.011). The test–retest revealed an 

excellent measurement error of −0.3 ± 1.6% for the global 

knee and 0.14 ± 1.7% for the femur. In conclusion, the 

newly developed fully automatic method described herein 

provides accurate and precise quantification of knee 

cartilage volume and will be a valuable tool for clinical 

follow-up studies. 
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I.  INTRODUCTION 

Medical image segmentation is a fundamental 

method in the processing of 2D and 3D images.  

Segmentation allows for the non-invasive isolation of a 

particular region or structure of interest.  The applicability 

of this can be extremely advantageous to various facets of 

medical research and diagnosis, including segmentation of 

the brain – separating grey matter (GM) structures from 

white matter (WM) structures, detection of lesions and 

early stages of tumor formation in the brain , feature 

extraction of a fetus from an ultrasound image , and aide in 

image-guided surgeries , among others.  It can be seen that 

image segmentation is a powerful utility, covering a variety 

of clinical applications, but there currently is no single 

approach that is universally applied to all of these 

modalities. 

 

II.  HIPPOCAMPUS PHYSIOLOGY 

 

The hippocampus (HC) is a small grey matter 

(GM) structure that resides symmetrically in the medial 

temporal lobes of both hemispheres of the brain .  Its 

name is derived from its curved shape that resembles a 

seahorse, which in Greek is hippocampus. Together with 

its adjacent neighbors – the amygdala (AG), entorhinal, 

perirhinal, parahippocampal, and temporopolar cortices – 

the hippocampal complex is responsible for carrying out 

complex behavior tasks such as declarative and 

representative memory processing .  The HC and AG are 

also two of the primary structures that comprise the 

limbic system.  The limbic system is largely involved 

with emotional responses as well as transforming short-

term memories to long-term memories.   

 

     The HC can be subdivided into an anterior section,a 

medialsection,andposterior section, commonly referred to 

as the head,body and tail, respectively .  Figure 2.1 below 

illustrates where the HC resides in the brain.  The T1-

weighted Magnetic Resonance Images (MRI) are of a 

Rhesus Macaque monkey and show the position of the 

HC, highlighted in its respective axial,  sagittal, and 

coronal planes. 

 

       

 

Figure 2.1. Location of the hippocampus (red) in a 

MRI.The axial (left), sagittal  (middle), coronal (right)  
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A.  STRIATUM PHYSIOLOGY  

The striatum is part of the basal ganglia and is 

located very close to the lateral ventricles in the brain.  It 

consists of the caudate nucleus and the putamen.The 

striatum received its name due to its striated-like 

appearance created by the dense axon bundles located in 

the basal ganglia.  It has primary roles in reward 

mechanisms subserving addiction and craving as well as 

involvement in motor planning .  Figure 2.2 below shows 

the location of the striatum in a MRI of a Rhesus 

Macaque monkey.  The caudate is shown in green and the 

putamen is shown in red. 

 
 

Figure 2.2. Location of the caudate (green) and putamen 

(red) in an MRI.  The axial(left), sagittal (middle), and 

coronal (right)  

 

B.  BLOCK DIAGRAM OF MRI  

 

 
Figure 2.3 Block Diagram of MRI 

 

C.  ACTIVE CONTOURS WITHOUT EDGES 

 

           Chan and Vese proposed a 2-D model that 

capitalized on the advantages of level sets and applied it to 

an active contour model which was not dependent on 

image gradients to evolve the contour.  As mentioned 

above, classical ACMs use a gradient function to detect 

the edges of the object and subsequently stop the 

segmentation.   

 

 
Figure 2.4  Two simple closed contours (left) and the 

resulting merged contour (right) 

Gradient maps are a well documented problem for 

hippocampal segmentation in MRI due to the low contrast 

and poor boundary definition of the HC.  Instead of using 

a gradient map as a stopping criterion, the Mumford-Shah 

segmentation technique was used.  The M-S technique is a 

variational problem that minimizes a functional to 

simultaneously smooth and segment a homogeneous 

region in the image, namely the SOI . 

The sign convention I decided to use to denote the 

level set distance map is, 

 

C = {( x, y ) ∈  Ω : φ ( x, y ) = 0} 
Inside  (C ) = {( x, y ) ∈  Ω : φ ( x, y ) < 0} 

Outside  (C ) = {( x, y ) ∈ Ω : φ ( x, y ) > 0} 

 

Furthermore, an illustration of this notation is shown 

below on a synthetic contour that is  propagating outwards 

along its normals. 

 

 
 

Figure 2.5  Level set sign convention. 

 

D.  MULTIVARIATE ANALYSIS 

 

    SVD and PCA are multivariate statistical 

methods that efficiently encapsulate and explain 

variation within a data set.  These methods are the 

foundation for providing a priori information regarding 

shape variability to aide in the segmentation of 

structures such as the HC.  PCA provides a way to 

identify and highlight patterns in a data set effectively 

reducing the dimensionality of the data to emphasize the 

most important variations.  .   

 

                PC 1 

PC2 

Figure 2.6   PCA with two principal components. 

 

    It operates as a linear transformation that plots the 
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data on a new coordinate system such that the variance by 

any projection of the data lies on the coordinate axis 

ordered in a sequential manner from greatest to lowest (i.e. 

the greatest variance would lie on the first coordinate, the 

second greatest variance would lie on the second 

coordinate, and so on) and is orthogonal to the previous 

principal component, therefore being uncorrelated A 

simple example can be seen below in Figure . The first 

principal component PC-1 provides the most variation and 

therefore is the most dominant. Again, it is important to 

note that the second principal component PC-2 is 

orthogonal to the first, illustrating an independence among 

the variances.    These projections are then reordered in a 

column-wise fashion to build a variance matrix. SVD 

provides the method to decompose this variance matrix.  

By solving the equation for SVD shown below, 

 

                                  Q = U ΣV 
T                                                          

 

   the corresponding eigenvectors and eigenvalues of the 

variance matrix Q can be found. Here, U and V
T 

(transpose 

of V) are orthogonal matrices where the columns of U are 

labeled as the left singular vectors and the rows of V
T 

are 

the right singular vectors.  S is a diagonal matrix and 

contains the singular values of Q ordered in a descending 

manner. 

            To solve for U and V
T

, the eigenvectors and 

eigenvalues of QQ
T 

and Q
T

Q are calculated respectively.  

The corresponding columns of U and V
T 

are formed from 

the eigenvectors of QQ
T 

and Q
T

Q. S is computed as      

thesquare root of the eigenvalues from either QQ
T 

or Q
T

Q .  

What this entails is that each eigenvector represented as a 

principal component will be numerically related to the 

variance that the PCA captures from the data set.  The 

eigenvalue is then correlated to the amount of variance 

captured, i.e. the higher the value, the more variance 

captured. 

 

III.  TRAINING PHASE 

The first step of the training process is to collect n 

images with M SOIs found in each image.  The SOIs must be 

consistent across all images. the right ellipsoid varies more 

laterally. The left ellipsoid is considered the central SOI and 

subsequent references make to the central object will be 

referring to this structure. These images in this particular 

fashion in order to understand and verify that the a priori 

information is encapsulating the correct shape and neighbor 

relationships.  Figure 3.1 below illustrates the two primary 

modes of variation derived from the PCA for both the central 

object and neighboring object. 

 

 

Figure 3.1 Zero level sets of the 2-D synthetic training data 

overlaid. 

 

It is obvious from the figure that the first primary 

mode of variation captures horizontal variation for the 

central object and lateral variation for the neighbor object.  

The inverse is true of the second primary mode of variation.  

The neighbor variation is calculated in the same way as the 

central object but uses the neighbor difference deviation.  

The top left figure shows the first primary mode of variation 

for the central object while the top right figure shows the 

first primary mode of variation for the neighbor object.  The 

bottom left and right images follow the same pattern as the 

top but represent the second primary mode of variation 

respectively.  For all the figures, the bold black line denotes 

the average shape of the object, the red line denotes the 

negative standard deviation, and the green line denotes the 

positive standard deviation. For the HC, the procedure I 

followed was to first distinguish the circular shape of the 

HC in the coronal plane and then propagate through each 

slice until I obtained roughly the medial slice. 

 
 

Figure 3.2 The zero level set primary modes of Variation for 

the 2-D synthetic training set 

 

Here the cerebral peduncle as a major landmark 

towards the proximal side of the HC and the putamen as 

the superior landmark Next its moved to the sagittal plane 

and delineated the HC using the parahippocampal gyrus as 

the inferior landmark, the occipital horn of the lateral 

ventricle as the caudal landmark, and the AG as the faint 

boundary forthe rostral landmark.  Now that two of the 

planes have been segmented, 
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Figure 3.3 ITK-SNAP interface used to manually segment the 

HC from the NHP images 

 

The axial plane has a crosshair that provides a 

marker for the limits of the shape. Subsequent slices are 

propagated in the coronal plane and the contour is segmented 

utilizing the crosshairs from the axial and sagittal planes as 

well as the initial landmarks.  After all slices in the coronal 

plane are segmented, addressed each slice of the axial and 

sagittal planes by stepping through and filling in any 

unfinished segmentation to smooth the shape. 

 

 
 

Figure 3.4 Axial view of the crosshair used in manual 

segmentation using SNAP. 

 

 The coronal plane is used again as the primary 

plane for the manual segmentation.  Each slice in the axial 

and sagittal planes is filled in upon incomplete 

segmentations to smooth the shape. An illustration of the 

first pass through the manual segmentation can be seen in 

Figure. For the striatum I followed the same procedure as the 

HC but naturally used different landmarks for both the 

caudate and the putamen.  The shape of the caudate 

resembles a butterfly when paired with the lateral ventricle in 

the coronal plane. 

 
 

Figure 3.5 Location of caudolentricular bridges in the axial 

plane of a MRI. 

 
Figure 3.6 Binary images of the HC extracted from the NHP 

MRI 

 

The segmentation of the putamen is a little bit 

trickier than its striatal counterpart. In the coronal plane, 

the medial slice of the putamen lies distal and inferior to the 

caudate.  It has a kidney-like resemblance and medially, the 

globus pallidus serves as its major landmark.  In the sagittal 

plane, the putamen is constrained by the anterior 

commissure and superiorly by the caudate.  The claustrum 

and caudate serve as the lateral and medial landmarks in the 

axial plane respectively.  Delineation of the putamen is 

easier in the axial plane so instead of propagating through 

the coronal plane as I did previously with the HC and 

caudate, I used the crosshairs as a measure and manually 

propagated through the axial plane for the manual 

segmentationFor the 2-D model of the HC, a fixed slice of 

the sagittal plane from every volume was chosen such that 

the origin of the HC was at the center of the structure.   

 

 

Figure 3.7  Zero level sets of the NHP training images. 

 

The next step of the segmentation process is the 

evolution of the surface contour.  The algorithm we decided 

upon for this thesis is the LSDM using geodesic active 

contours to propagate the curve.  Shape and neighbor priors  

as discussed above are used as constraining factors for the 

evolution. 
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Table 3.1- Classification of Signals 

 
The classification of  mensial signals as  shown by 

MRI is listed in the table 3.1.If the signaling grade is assumed 

to be zero ,the signal is the normal signal ,in case the Grade 

level is increased to one, the irregular increased intramenisc 

signal, if it is increased to 2 it will not communicating with 

the superior, increased to the topmost level of 3 , the 

abnormal increased signal. 

IV.  KNEE ANATOMY 

While there are four bones that come together at the 

knee, only the femur (thigh bone) and the tibia (shin bone) 

form the joint itself. The head of the fibula (strut bone on the 

outside of the leg) provides some stability, and the patella 

(kneecap) helps with joint and muscle function. Movement 

and weight bearing occur where the ends of the femur called 

the femoral condyles match  up with the top flat surfaces of 

the tibia (tibial plateaus). There are two major muscle groups 

that are balanced and allow movement of  the knee joint. 

When the quadriceps muscles on the front of the thigh 

contract, the knee extends or straightens. The hamstring 

muscles on the back of the thigh flex or bend the knee when 

they contract. The muscles cross the knee joint and are 

attached to the tibia by tendons. The quadriceps tendon is a 

little special, in that it contains the patella within it. The 

patella allows the muscle quadriceps/tendon unit to work 

more efficiently. This tendon is renamed the  patellar tendon 

in the area below the kneecap to its attachment to the tibia. 

The stability of the knee joint is maintained by four 

ligaments, thick bands of tissue that stabilize the joint. The 

medial collateral ligament (MCL) and lateral collateral 

ligament (LCL) are on the sides of the knee and prevent the 

joint from sliding sideways. The anterior cruciate ligament 

(ACL) and posterior cruciate ligament (PCL) form an "X" on 

the inside of the knee and prevent the knee from sliding back 

and forth. These limitations on knee movement allow the 

knee to concentrate the forces of the muscles on flexion and 

extension. 

Table 4.1-Common Symptoms and signs of various Acute 

Knee Injuries 

 

 

V. CONCLUSION 

 

Medical image segmentation is an important image 

processing method in medicine.  It allows for biological 

structures to be isolated non-invasively.  Whether it is for 

diagnostic purposes or practically applied in image guided 

surgeries, image segmentation has many forms and many 

uses.  Unfortunately there currently is no segmentation 

strategy that can accommodate all its applications.  The 

hippocampus is a structure that employs many different 

segmentation strategies due to its low contrast and indistinct 

boundaries.  I decided to implement the Level Set 

Deformable Model using shape and neighbor priors as my 

approach to segment both the hippocampus and the striatum.  

Both these subcortical structures are involved in the behavior 

of alcoholics and alcohol abuse.  Using medical image 

segmentation on T1-weighted MRI, I analyzed the 

volumetric changes associated with alcohol abuse amongst a 

set of nonhuman primate Rhesus Macaques 

 

VI. FUTURE WORK 

The current methods exclude the patella to focus 

on the tibiofemoral joint. It would  be  ideal  to  eventually 

include the patella and this is a future goal for our projects 

but at This is also advantageous for us since our group  often 

focuses on measures of tibiofemoral OA progression using 

measures of  tibiofemoral an axial scan. After confirming 

that the method is functional in  the two main bones, our 

goal will be to explore  segmenting the patella as  well as 

extend our method from the current 2D form to its 3D 

version. The caudate is shown here since it is the central SOI.  

Each figure contains the average shape in blue as a surface.  

The left figures represent the negative variance while the right 

figures represent the positive variance.  The top row shows 

the first primary mode of variance, and the bottom row 

depicts the second primary mode of variance. 
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