
International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 7

A Fine Grained Architecture for Advanced Encryption

Standard
1
Anju Krishna,

2
Mr. P. Srinivasan M.E

1
PG scholar,

2
Assistant Professor,

M.E- Embedded system technologies,
1,2

Sun college of Engineering and Technology,

Erachakulam, Nagercoil, Tamilnadu, India

Abstract - A feasibility study for implementing the

AES encryption algorithm in hardware achieving 500

Gbits/s is presented. The methodology followed in the

process of obtaining the solution allowed us to reach a

highly regular solution that is scalable. In recent years

the internet has become one of the top communication

medium used by the general public. More and more

services are available through the internet. Managing

sensitive information and the need for security has

become a major concern for the users as well as the

providers. Global security threats, cyber attacks to

cripple a network connection or unauthorized

intrusions to access restricted information are

nowadays network security concerns all over the

world. Encryption is a mean by which information can

be safely exchanged.

Keyword: AES; High Throughput; ASICs; High Speed

Architectures.

I. INTRODUCTION

Cryptography is the science of information

and communication security. Cryptography is the

science of secret codes, enabling the confidentiality of

communication through an insecure channel.

Cryptographic applications becoming increasingly

more important in today‟s world of data exchange.

Cryptography services are essential in order to provide

the authentication, privacy, non-repudiation and

integrity of private data being transmitted. It protects

against unauthorized parties by preventing

unauthorized alteration of use. In practice,

cryptography is the task of transforming information

into a form that is incomprehensible, but at the same

time allows the intended recipient to retrieve the

original information using the secret key, using most of

the time a key. There exists certain cipher that doesn't

need a key.

A. SECURITY MECHANISMS

A security mechanism is any process that is

designed to detect,prevent,or recover from a security

attack. The two main security mechanisms are:

 Encryption

 Decryption

 An original message is known as the plain text, while

the coded message are is called the cipher text. The two

main encryption techniques are

i. Data encryption standard

ii. Advanced Encryption Standard

The National Institute of Standards and

Technology (NIST) selected the Rijndael algorithm as

the Advanced Encryption Standard (AES). The

Rijndale was designed to have the following

characteristics:

i. Resistance against all known attacks.

ii. Speed and code compactness on wide

range of platforms.

iii. Design simplicity.

Because of the growing requirements for high

speed secure communications, the application of AES

algorithm in UART (Universal Asynchronous Receiver

Transmitter) module which is a widely used in serial

data communication to support full-duplex serial

communication is proposed here.

B. STEPS IN AES ENCRYPTION

The following shows the AES encryption

steps with the key expansion process. For encryption

,there are four basic transformations applied as follows:

1. SubBytes: The SubBytes operation is a nonlinear

byte substitution. Each byte from the input state is

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 8

replaced by another byte according to the substitution

box (called the S-box). The S-box is computed based

on a multiplicative inverse in the finite field GF(28)

and a bitwise affine transformation.

2. ShiftRows: In the Shift Rows transformation, the

first row of the state array remains unchanged.The

bytes in the second, third ,and fourth rows are

cyclically shifted by one, two, and three bytes to the

left, respectively.

3. MixColumns: During the MixColumns process,

each column of the state array is considered as a

polynomial over GF(28). After multiplying modulo

𝑥4+1 with a fixed polynomial a(x), given by

a(x)={03}𝑥3+{01}𝑥2+{01}𝑥1+{02} the result is the

corresponding column of the output state.

 4. AddRoundKey: A round key is added to the state

array using a bitwise exclusive-or (XOR) operation.

Round keys are calculated in the key expansion

process.

II. TARGETED MANY-CORE ARCHITECTURE

According to Pollack‟s Rule, the performance

increase of architecture is roughly proportional to the

square root of its increase in complexity. Based on

throughput requirement, number of pipelining stages

can be restricted.

Figure 2.1. Computational platform of ASAP processor

A. MATHS PRELIMINARIES

The basic unit of processing in the AES

algorithm is a byte. All byte values in the AES

algorithm will be presented as the concatenation of its

individual bit values (0 or 1) between the braces in the

order (b7, b6, b5, b4, b3, b2, b1, b0). Several

operations in AES are defined at byte level, with bytes

representing elements in the finite field GF(2
8
)[12].

Other operations are defined in terms of 4-byte words.

Finite field elements can be added and multiplied , but

these operations are different from those used for

numbers. The following subsections introduce the basic

mathematical concepts needed.

B. The Field GF(2
8
)

The elements of a finite field can be

represented in several different ways. For any prime

power there is a single finite field, hence all

representations of GF(2
8
) are isomorphic.. A byte b,

consisting of bits b7 b6 b5 b4 b3 b2 b1 b0, is considered as

a polynomial with coefficient in {0,1}:

b7x
7
 + b6x

6
 + b5x

5
 + b4x

4
 + b3x

3
 + b2x

2
 + b1x + b0

C. Finite Field Addition

The addition of two elements in a finite field

is achieved by “adding” the coefficients for the

corresponding powers in the polynomials for the two

elements. The addition is performed with the XOR

operation (denoted by ⊕) - i.e., modulo 2 - so that

1⊕1 = 0, 1⊕ 0 = 1, and 0 ⊕ 0 = 0. Consequently,

subtraction of polynomials is identical to addition of

polynomials. Alternatively, addition of finite field

elements can be described as the modulo 2 addition of

corresponding bits in the byte. For two bytes {a7 a6 a5

a4 a3 a2 a1 a0} and {b7 b6 b5 b4 b3 b2 b1 b0}, the sum is

{c7 c6 c5 c4 c3 c2 c1 c0}, where each ci = ai ⊕ bi (i.e., c7

= a7 ⊕ b7, c6 = a6 ⊕b6, ...c0 = a0 ⊕ b0).

For example, the following expressions are equivalent

to one another: (Polynomial notation) (x
6
 + x

4
 + x

2
 +

x + 1) + (x
7
 +x+1)=x

7
+x

6
+ x

4
 + x

2

(Binary notation) {01010111}⊕ {10000011} =

{11010100}

(Hexadecimal notation){57}⊕ {8E} = {D4}

D. Finite Field Multiplication

Finite field multiplication is more difficult

than addition and is achieved by multiplying the

polynomials for the two elements concerned and

collecting like powers of x in the result. This situation

is handled by replacing the result with the remainder

polynomial after division by a special eight order

irreducible polynomial, which for AES is m(x) = x
8
 +

x
4
 + x

3
 + x +1. Since this polynomial has powers of x

up to 8, it cannot be represented by a single byte and

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 9

will be written as either 1{00011011} or 1{1B} as

indicated earlier

For example to find the result of (x
6
 + x

4
 + x

2
 + x +1)

(x
7
 + x +1) (x

6
 + x

4
 + x

2
 + x +1) x

7

= x
13

 + x
11

 + x
9
 + x

8
 + x

7
 (x

6
 + x

4
 + x

2
 + x +1) x

= x
7
+ x

5
 + x

3
 + x

2
 + x(x

6
 + x

4
 + x

2
 + x +1) 1

= x
6
 + x

4
 + x

2
 + x +1

= x
13

 + x
11

 + x
9
 + x

8
 + x

6
 + x

5
 + x

4
 + x

3
 +1

This intermediate result is now divided by m(x) above.

The final result can be the following

 x
7
 + x

6
 + 1 = {C1}.

III. POLYNOMIALS & COEFFICIENTS GF(2
8

)

Four term polynomials can be defined with

coefficients that are finite field elements as: a(x) = a3x
3

+ a2 x
2
 + a1 x + a0 where the four coefficients, each

represented by a byte, will be denoted as a 32-bit word

in the form [a3, a2, a1, a0]. With a second polynomial:

b(x) = b3x
3
 + b2x

2
 + b1x + b0 addition can be

performed by adding the finite field coefficients of like

powers of x, which corresponds to an XOR operation

between the corresponding bytes in each of the words

or an XOR of the complete 32-bit word values (note

that the variable x here is different to that used in the

definition of individual finite field elements).

Multiplication is achieved by algebraically expanding

the polynomial product and collecting like powers of x

to give:

c(x) = c6 x
6
 + c5 x

5
 + c4 x

4
 + c3 x

3
 + c2 x

2
 + c1 x + c0

Where,

c0 = a0 · b0

 c4 = a3 · b1 ⊕ a2 · b2 ⊕ a1 · b3

c1 = a1 · b0 ⊕ a0 · b1

 c5 = a3 · b2 ⊕ a2 · b3

c2 = a2 · b0 ⊕ a1 · b1 ⊕ a0 · b2

 c6 = a3 · b3

c3 = a3 · b0 ⊕ a2 · b1 ⊕ a1 · b2 ⊕ a0 · b3

With and ⊕ representing finite field multiplication

and addition (XOR) respectively. This result requires

six bytes to represent its coefficients but it can be

reduced modulo a degree 4 polynomial to produce a

result that is of degree less than 4. In Rijndael the

polynomial used is (x
4
 + 1) and reduction produces the

following polynomial coefficients:

d3 = a3 b0 ⊕ a2 b1 ⊕ a1 b2 ⊕ a0 b3

d2 = a2 b0 ⊕ a1 b1 ⊕ a0 b2 ⊕ a3 b3

d1 = a1 b0 ⊕ a0 b1 ⊕ a3 b2 ⊕ a2 b3

d0 = a0 b0 ⊕ a3 b1 ⊕ a2 b2 ⊕ a1 b3

If one of the polynomials is fixed, this can

conveniently be written in matrix form as:

𝑑3
𝑑2
𝑑1
𝑑0

 =

𝑎0 𝑎1 𝑎2 𝑎3
𝑎3 𝑎0 𝑎1 𝑎2
𝑎2 𝑎3 𝑎0 𝑎1
𝑎1 𝑎2 𝑎3 𝑎0

𝑏3
𝑏2
𝑏1
𝑏0

Because (x
4
 + 1) is not an irreducible polynomial, not

all polynomial multiplications are invertible. For

Rijndael, however, a polynomial that has an inverse

has been chosen:

a(x)= {03} x
3
 + {01} x

2
 + {01} x + {02}

a
-1

(x)= {0b} x
3
 +{0d} x

2
 +{09} x +{0e}

This transformation is used in MixColumn

and InvMixColumn. Another polynomial that Rijndael

uses has a0 = a2 = a3 = {00} and a1 = {01}, which is

the polynomial x. Inspection of above will show that its

effect is to form the output word by rotating the bytes

in the input word so that [b3, b2, b1, b0] is transformed

into [b2, b1, b0, b3], with bytes moving to higher index

positions and the top byte wrapping round to the lowest

position. Higher powers of x correspond to the other

cyclic permutations of the four bytes within a 32-bit

word. The Rot function that is used in the key expander

corresponds to x3.

A. SubBytes() Transformation

This step is carried out byte non-linear

substitution through the AES‟s S-box, in order to

achieve resistance to differential and linear attacks

purposes[2]. The method is: every byte recorded as

abcdefgh, abcd and efgh is the representative of the

line and column respectively. The transformed byte

will be replaced as the line abcd, column efgh

correspond in the S-box though the look-up table, as

follows (in decryption of the inverse S-box for the

same treatment). The SubBytes() transformation is a

non-linear byte substitution that operates independently

on each byte of the State using a substitution table (S-

box). This S-box which is invertible is constructed by

composing two transformations:

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 10

1. Take the multiplicative inverse in the finite field

GF(2
8

), the element {00} is mapped to itself.

2. Apply the following affine transformation (over

GF(2)): 𝑏𝑖
′ = 𝑏𝑖 ⊕ 𝑏 𝑖+4 𝑚𝑜𝑑 8 ⊕ 𝑏 𝑖+5 𝑚𝑜𝑑 8 ⊕

 𝑏 𝑖+6 𝑚𝑜𝑑 8 ⊕ 𝑏 𝑖+7 𝑚𝑜𝑑 8 ⊕ 𝑐𝑖

for, 0 ≤ 𝑖 < 8 where bi is the i
th

bit of the byte, and ci

is the i
th

bit of a byte c with the value {63} or

{01100011}. Here and elsewhere, a prime on a variable

(e.g., 𝑏′) indicates that the variable is to be updated

with the value on the right. In matrix form, the affine

transformation element of the S-box can be expressed

as:

𝑏′0
𝑏′1
𝑏′2
𝑏′3
𝑏′4
𝑏′5
𝑏′6
𝑏′7

=

1 1 0 0 1 1 1 1
1 1 1 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

𝑏0
𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6
𝑏7

+

1
1
0
0
0
1
1
0

Figure 3.1. Sub bytes () Transformation

 For Affine Transformation the constant c is {63} or

{01100011} and for Inverse Affine Transformation the

constant c is {05} or {00000101}. The S-box used in

the SubBytes() transformation is presented in

hexadecimal form. For example, if S1,1 = {53}, then

the substitution value would be determined by the

intersection of the row with index „5‟ and the column

with index „3‟.

The sub bytes transformation is performed on

a state of 256 permutation of bytes.It is a non-linear

substitution step where each byte is replaced with

another according to the look up table. This operation

provides the non-linearity in the cipher. The S-box

used is derived from the multiplicative inverse over GF

(2
8
), known to have good non-linearity

properties.Specifically, the ShiftRows() transformation

proceeds as follows:

𝑠𝑟 ,𝑐
′ = 𝑠𝑟 , 𝑐+𝑠ℎ𝑖𝑓𝑡 𝑟 ,𝑁𝑏 𝑚𝑜𝑑 𝑁𝑏

where the shift value shift(r,Nb) depends on the row

number, r, as follows:

shift(1,4) = 1; shift(2,4) = 2; shift(3,4) = 3

Figure 3.2 Shift rows () Transformation

B. MixColumns() Transformation

The MixColumns() transformation operates

on the State column-by-column, treating each column

as a four-term polynomial. The columns are considered

as polynomials over GF(2
8

) and multiplied modulo x
4

+ 1 with a fixed polynomial a(x), given by a(x)={03}x
3

+ {01}x
2

+ {01}x + {02} .

Let s(x) = a(x) XOR s(x):

𝑠′0,𝑐

𝑠′1,𝑐

𝑠′
2,𝑐

𝑠′3,𝑐

=

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

𝑠0,𝑐

𝑠1,𝑐

𝑠2,𝑐

𝑠3,𝑐

As a result of this multiplication, the four bytes in a

column are replaced by the following:

 𝑠′0,𝑐 = 02 . 𝑠0,𝑐 ⊕ (03 . 𝑠1,𝑐) ⊕ 𝑠2,𝑐 ⊕ 𝑠3,𝑐

 𝑠′1,𝑐 =𝑠0,𝑐 ⊕ 02 . 𝑠1,𝑐 ⊕ (03 . 𝑠2,𝑐) ⊕ 𝑠3,𝑐

 𝑠′2,𝑐 =𝑠0,𝑐 ⊕ 𝑠1,𝑐 ⊕ 02 . 𝑠2,𝑐 ⊕ (03 . 𝑠3,𝑐)

 𝑠′3,𝑐 = 03 . 𝑠0,𝑐 ⊕ 𝑠1,𝑐 ⊕ 𝑠2,𝑐 ⊕ (02 . 𝑠3,𝑐)

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 11

Figure 3.3 MixColumns() Transformation

In the Mix columns step, the four bytes of each column

of the state are combined using an invertible linear

transformation.Mix column function takes four bytes as

input and outputs four bytes, where each input byte

affects all four output bytes. Together with shift row,

mix columns provide diffusion in the cipher.

C. AddRoundKey () Transformation

In the AddRoundKey () transformation, a

Round Key is added to the State by a simple bitwise

XOR operation. Each Round Key consists of Nb words

from the key schedule. Those Nb words are each added

into the columns of the State, such that

[𝑠′0,𝑐 , 𝑠′1,𝑐 , 𝑠′2,𝑐 , 𝑠′3,𝑐]=[𝑠0,𝑐 , 𝑠1,𝑐 , 𝑠2,𝑐𝑠3,𝑐] ⊕

[𝑤𝑟𝑜𝑢𝑛𝑑 ∗𝑁𝑏+1]

where [wi] are the key schedule words, and round is a

value in the range 0 ≤ round ≤ Nr. The action of this

transformation is illustrated in the figure given below,

where l = round * Nb.

Figure 3.6. AddRoundKey() Transformation

IV. SIMULATION TOOL

Our work-steps Writing VHDL Code (Very

high speed integrated circuit Hardware Descriptive

Language), Simulating the code on "ModelSim,

Synthesizing & Implementing (i.e. Translate, Map &

Place and Route) the code on "Xilinx - Project

Navigator. Tools used as,

 Xilinx ISE 8.1i

 ModelSim SE PLUS 5.7f

VHDL (VHSIC Hardware Description

Language) is a hardware description language used

in electronic design automation to

describe digital and mixed-signal systems such as field-

programmable gate arrays and integrated circuits.

VHDL can also be used as a general purpose parallel

programming language.VHDL is commonly used to

write text models that describe a logic circuit. Such a

model is processed by a synthesis program, only if it is

part of the logic design. A simulation program is used

to test the logic design using simulation models to

represent the logic circuits that interface to the design.

V. RESULT

The AES encryption and decryption is made

to run on the Xilinx software and the waveform of the

process is obtained. The clock and the reset value is

given.In the Xilinx software input and output is given

in the binary format.

Figure 5.1 Output of AES encryption and decryption

The input is given in a binary sequence and

the same sequence in the same format.One can design

hardware in a VHDL IDE (for FPGA implementation

such as Xilinx ISE, Altera Quartus, Synopsys Synplify

or Mentor Graphics HDL Designer) to produce

the RTLschematic of the desired circuit. After that, the

generated schematic can be verified using simulation

software which shows the waveforms of inputs and

outputs of the circuit after generating the appropriate

testbench. To generate an appropriate testbench for a

http://en.wikipedia.org/wiki/VHSIC
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Digital_electronics
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Register-transfer_level

International Journal of Trend in Research and Development, Volume 2(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2015
Available Online@www.ijtrd.com 12

particular circuit or VHDL code, the inputs have to be

defined correctly. For example, for clock input, a loop

process or an iterative statement is required.

VI. FUTURE WORK

 In future work, the parallel encryption

process of AES encryption can be performed by using

fine grained processors. Here the encryption process

can be performed by using a number of processors.

This will provide more efficiency and throughput.

REFERENCES

[1] J. Daemen and V. Rijmen, “AES Encryption

Algorithm Hardware Implementation:

Throughput and Area Comparison of 128, 192 and

256-bits Key”, Springer, 2002.

[2] Johannes Wolkerstorfer, Elisabeth Oswald and

Mario Lamberger, “An Optimized S-Box for

Advanced Encryption Standard (AES) Design ”,

Institute for Applied Information Processing and

Communication, Graz University of Technology,

Springer-Verlag Berlin Heidelberg, 2002.

[3]Mozaffari-Kermani, M.; Reyhani-Masoleh, " New

Comparative Study Between DES, 3DES and AES

within Nine Factors," Electro/Information

Technology, 2009. eit '09. IEEE International

Conference on , vol., no., pp.52-55, 7-9 June 2009.

[4] NIST, “Data Integrity and Security in Cloud

Environment Using AES Algorithm”, FIPS PUBS

197, National Institute of Standards and

Technology, November 2001.

 [5] O P Verma, Ritu Agarwal, Dhiraj Dafouti, Shobha

Tyagi in “Image Encryption and Decryption using

AES”2011

[6] P. Rudra, K. Dubey, C. S. Jutla, V. Kumar, J. R.

Rao, & P. Rahatgi. “ Chaotic variation of AES

algorithm” Proceedings of the Cryptographic

Hardware in Embedded Systems (CHES). pp. 171-

184, 2001.

[7] P. Rudra, K. Dubey, C. S. Jutla, V. Kumar, J. R.

Rao, & P. Rahatgi “ Secured High throughput

implementation of AES Algorithm.” Proceedings

of the Cryptographic Hardware in Embedded

Systems (CHES). pp. 171-184, 2001.

[8]Sai Praveen Venigalla, M. Nagesh Babu, Srinivas

Boddu, G. Santhi Swaroop Vemana, in “

Implemenation of AES algorithm UART module

for secured data transfer”2012

[9]Sujatha Hiremath and M.S.Suma in “Review paper

on FPGA based implementation of advanced

encryption standard(AES) algorithm”2011

 [10]Xiaona Lv, Liping Xu, Enhanced AES Algorithm,

2012

