International Journal of Trend in Research and Development, Volume 4(2), ISSN: 2394-9333 www.ijtrd.com

# Comparative Study of Segmentation Techniques on CT-liver Images

<sup>1</sup>A.Mohamed Riyas and <sup>2</sup>Dr.M.Mohamed Sathik

<sup>1</sup>Master of Philosophy in Computer Science, <sup>2</sup>Principal & Research Coordinator

<sup>1,2</sup>Research Department of Computer Science, Sadakathullah Appa College, Tirunelveli, Tamilnadu, India

*Abstract:* In this paper we present a comparative study of CT liver image segmentation techniques. The aim of this study is to assess the quality of most commonly used segmentation methods globle threshold-iterative method, globle threshold-Ostu's method, local thresholding and Region growing. Based on the metrices MSE, PSNR and SNR, the performance of the methods on CT liver image segmentation are measured and compared. This study is useful to choose a suitable method for computerizing liver diagnostic system.

Keywords: CT-Liver, Thresholding, Region Growing.

### I. INTRODUCTION

Imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) are nowadays standard instruments for the diagnosis of liver pathologies such as cirrhosis, liver cancer, fulminant hepatic failure. Among these techniques, CT images are often preferred by diagnosticians since they provide a more accurate anatomical information about the visualized structures.

Computed Tomography (CT) is quite useful for doctors to analyze the pathological changes of the biological organs. In order to reduce deaths, the diseases must be detected accurately in the early stage. The main problem of liver segmentation from CT images is related to low contrast between liver and nearby organs intensities. Liver sometimes presents in different dimensions and makes the detection and segmentation even more difficult. The liver is a vital organ with vascular, metabolic, secretory and excretory functions. It is extensively perused during liver surgery, special care has to be taken in order to avoid bleedings.

The liver cancer is one of the most common internal malignancies also one of the leading death causes. Currently, the confirmed diagnosis used widely for the liver cancer is needle biopsy. The needle biopsy, however, is an invasive technique and generally not recommended. Therefore, computed tomography (CT) has been identified as accurate non-invasive imaging modalities in the diagnosis of the liver cancer. Many clinical applications for computer aided diagnosis require medical images to be segmented. For example, planning of liver tumor embolization, ablation and surgical resection require precise segmentation of the liver from CT images. Due to the complex shape and the large size of this organ, the manual segmentation is time consuming. In order to increase the efficiency of the clinical work, automatic segmentation methods are needed. A computerized liver CT segmentation system should take less time and should segment the liver accurately. It should be consistent and should provide a system to radiologist which is self explanatory and easy to operate.

# **II. METHODOLOGY**

#### Image Segmentation

Image segmentation is an important process to extract information from complex images. Segmentation has wide application in medical field. The main objective of image segmentation is to partition an image into mutually exclusive and exhausted regions such that each region of interest is spatially contiguous and the pixels within the region are homogeneous with respect to a predefined criterion. Widely used homogeneity criteria include values of intensity, texture, color, range, surface normal and surface curvatures. Several diagnostics are based on proper segmentation of the digitized image. Segmentation of medical images is needed for applications involving estimation of the boundary of an object, classification of tissue abnormalities, shape analysis, contour detection. Image segmentation and its performance evaluation are important fields in image processing and, because of the complexity of the medical images, segmentation of medical image is still a challenging problem.

# A. Thresholding

Thresholding segmentation methods are very simplest and fundamental segmentation methods. A process of creating a black-and-white image out of a grayscale image consisting of setting exactly those pixels to white whose value is above a given threshold, setting the other pixels to black. In this study, totally three types of thresoding algorithms applied. There are,

- i) iterative method.
- ii) Ostu's method.
- iii) Local threshold method.

# B. Region growing

Region growing method objective is partition an image into segmented region. Region growing is a region-based sequential technique for image segmentation by assembling pixels into larger regions based on predefined seed pixels, growing criteria and stop conditions. Region growing algorithm also used in our study.

### **III. EXPERIMENTAL RESULT**

Result of applying various segmentation techniques over set of images.



Figure 1: original images

# International Journal of Trend in Research and Development, Volume 4(2), ISSN: 2394-9333 www.ijtrd.com



Figure 2: results of iterative method



Figure 3: results of Ostu's method



Figure 4: results of local threshold



Figure 5: results of region growing

## VI. PERFORMANCE METRICS & EVALUATION

#### 1) Mean Squared Error:

It is the mean squared difference between the original image and the segmented image.

$$MSE = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [f(x, y) - \hat{f}(x, y)]^2$$

#### 2) Peak Signal to noise ratio:

It is a classical index defined as the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. MSE (Mean Square Error) is the Euclidean distance between the original and segmented image.

$$PSNR = 10 * \log_{10} \left( \frac{255^2}{MSE_{min}} \right)$$

#### *3)* The signal-to-noise ratio:

SNR is used in imaging as a physical measure of the sensitivity of a image. Traditionally, SNR has been defined as the ratio of the average signal value to the standard deviation of the background

$$SNR = \frac{\mu}{\sigma}$$

Where  $\mu$  is a average signal value and  $\sigma$  is a standard deviation of background

# 4) Performance Evaluation:

Performance is calculated by PSNR, MSE and SNR. Following tables shown the results of PSNR, MSE and SNR values of four different segmentation algorithms.

Table 1: result of MSE, PSNR and SNR of iterative method

| Iterative | MSE      | PSNR      | SNR      |
|-----------|----------|-----------|----------|
| method    |          |           |          |
| Image 1   | 0.115004 | 57.523670 | 2.035176 |
| Image 2   | 0.080774 | 59.058103 | 2.775523 |
| Image 3   | 0.091737 | 58.505380 | 1.868512 |
| Image 4   | 0.116585 | 57.464372 | 2.090539 |
| Image 5   | 0.108035 | 57.795151 | 1.500410 |
| Image 6   | 0.119034 | 57.374078 | 1.982136 |
| Image 7   | 0.044961 | 61.602451 | 2.650223 |
| Image 8   | 0.093475 | 58.423827 | 2.461607 |
| Image 9   | 0.084085 | 58.883621 | 2.798236 |
| Image10   | 0.056964 | 60.574809 | 2.681319 |
| Avg       | 0.091065 | 58.72055  | 2.284368 |

| Table 2: result of MSE | , PSNR a | nd SNR of | Ostu's method |
|------------------------|----------|-----------|---------------|
|------------------------|----------|-----------|---------------|

| Ostu's  | MSE      | PSNR      | SNR      |
|---------|----------|-----------|----------|
| methods |          |           |          |
| Image 1 | 0.120907 | 57.306289 | 2.013949 |
| Image 2 | 0.084307 | 58.872143 | 2.751471 |
| Image 3 | 0.125046 | 57.160095 | 1.994757 |
| Image 4 | 0.119149 | 57.369912 | 2.083133 |
| Image 5 | 0.168770 | 55.857853 | 1.778774 |
| Image 6 | 0.138231 | 56.724738 | 1.981647 |
| Image 7 | 0.045684 | 61.533140 | 2.640159 |
| Image 8 | 0.101784 | 58.054015 | 2.432098 |
| Image 9 | 0.087958 | 58.688063 | 2.823851 |
| Image10 | 0.057210 | 60.556121 | 2.678212 |
| Avg     | 0.104905 | 58.212240 | 2.211650 |

Table 3: result of MSE, PSNR and SNR of local threshold method

|           | r        |           | r        |
|-----------|----------|-----------|----------|
| Local     | MSE      | PSNR      | SNR      |
| threshold |          |           |          |
| Image 1   | 0.149747 | 56.377227 | 0.601245 |
| Image 2   | 0.272955 | 53.769900 | 0.536226 |
| Image 3   | 0.157390 | 56.161024 | 0.806477 |
| Image 4   | 0.139618 | 56.681382 | 1.237316 |
| Image 5   | 0.122246 | 57.258455 | 0.907701 |
| Image 6   | 0.150422 | 56.357696 | 1.075751 |
| Image 7   | 0.143911 | 56.549876 | 0.626293 |
| Image 8   | 0.212571 | 54.855755 | 0.799992 |
| Image 9   | 0.310523 | 53.209873 | 0.698356 |
| Image10   | 0.160096 | 56.087004 | 0.944844 |
| Avg       | 0.181948 | 55.730820 | 0.823420 |

Table 4: result of MSE,PSNR and SNR of region growing method

| Region  | MSE      | PSNR      | SNR      |
|---------|----------|-----------|----------|
| growing |          |           |          |
| Image 1 | 0.296771 | 53.406594 | 0.723067 |
| Image 2 | 0.121714 | 57.151803 | 1.871532 |

IJTRD | Mar-Apr 2017 Available Online@www.ijtrd.com

# International Journal of Trend in Research and Development, Volume 4(2), ISSN: 2394-9333 www.ijtrd.com

| Image 3 | 0.233151 | 54.454427 | 1.338111 |
|---------|----------|-----------|----------|
| Image 4 | 0.245433 | 53.371571 | 0.961627 |
| Image 5 | 0.226363 | 55.727621 | 0.937152 |
| Image 6 | 0.256514 | 53.273918 | 1.221838 |
| Image 7 | 0.063499 | 60.103145 | 1.897364 |
| Image 8 | 0.223351 | 54.171292 | 1.795964 |
| Image 9 | 0.313259 | 53.125626 | 1.788912 |
| Image10 | 0.074052 | 59.311054 | 1.703273 |
| Avg     | 0.185412 | 56.358820 | 1.213170 |

#### CONCLUSION

In this study, four different segmentation algorithms applied to set of CT-liver images. iterative threshold, ostu's method, local threshold and region growing algorithm's results were obtained and compared from the MSE, PSNR and SNR metrices. These results can help the better segmentation technique selection for the computerized CT-liver diagnosis.

#### References

- [1] Rajesh Dikshit, Prakash C Gupta, "Cancer mortality in India: a nationally representative survey" Published Online in The Lancet, vol. 379, pp. 1807-1816, May 2012
- [2] S.Priyadarsini and Dr.D.Selvathi, "Survey on Segmentation of Liver from CT Image" IEEE international conference on Advance communication control and computing technologies, pp. 234-238, August 2012.
- [3] Priyanka Kumar, Shailesh Bhalerao," Detection of Tumor in Liver Using Image Segmentation and Registration Technique "IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. VIII (Mar - Apr. 2014), PP 110-115
- [4] Dr. Alyaa H. Ali, Entethar M. Hadi," Diagnosis of Liver Tumor from CT Images using Digital Image Processing" International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015, ISSN 2229-5518
- [5] Kumar, P. Bhalerao, S. 2014, "Detection of Tumor in Liver Using Image Segmentation and Registration Technique" IOSR Journal of Electronics and Communication Engineering (IOSR-JECE). Vo.9, No.2, PP: 110-115.
- [6] S. Saranya, Dr. M. Pushparani," Liver Tumour Detection for Ct Images" International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169, Volume: 4 Issue: 4
- [7] Abdel-massieh,N.H.,Hadhoud,M,M.,and Amin, K.M., "Fully automatic liver tumour segmentation from abdominal CT scans," IEEE International Conference on Computer Engineering and Systems(ICCES),pp.197-202,2010
- [8] Ahmed M.Mharib,"Survey on liver CT image segmentation methods", Artificial Intelligence Review VOI.37,8395, Springer 2011
- [9] http://www.mathworks.com
- [10] Dr. P. V. Ramaraju, G. Nagaraju, V.D.V.N.S.Prasanth, B.Tripura sankar, P. Krishna, V. Venkat "Feature Based Detection Of Liver Tumour Using K-Means Clustering And Classifying Using Probabilistic Neural Networks" International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 4 Issue 5 May 2015.