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I. INTRODUCTION 
 

Huang and Zhang [11] generalized the notion of metric spaces, replacing the real numbers by an ordered Banach space and 

defined cone metric spaces. They have proved Banach contraction mapping theorem and some other fixed point theorems of 

contractive type mappings in cone metric spaces. Subsequently, Rezapour and Hamlbarani [17], Ilic and Rakocevic [9], contributed 

some fixed point theorems for contractive type mappings in cone metric spaces. 

Gahler [7, 8] introduced the notions of 2-metric space and Dhage [5, 6] defned D-metric spaces as a generalization of metric 

spaces. In 2003, Zead Mustafa and Brailey Sims[13] introduced a new structure of generalized metric spaces, which are called G-

metric spaces. Recently Aage and Salunke[2] generalized G -metric space by replacing R by real Banach space in G -metric spaces. In 

2007 Shaban Sedghi et al [18] modify the D-metric space and defined D §-metric spaces. Now in this paper I Generalized D-metric 

spaces by introducing generalized D -metric space by replacing R by a real Banach space in D-metric spaces. 

II. PRELIMINARY NOTES 

Recall that a selfmap  f  of a D*-metric space (X, D*) is called a contraction, if there is a q  with 10  q  such that  

(2.1)  ),,(*.),,(* yyxDqfyfyfxD   for all Xyx ,  

In a different way R. Kannan [9] has defined a contraction for metric spaces which we shall call a K-contraction. Analogously we 

define the K-contractions for D*-metric spaces as follows: 

(2.2)  Definition: A selfmap  f  of a D*-metric space (X, D*) is called a K-contraction, if there is a q  with 
2

1
0  q  such that  

(2.3)  ),,(*),,(*max.),,(* fyfyyDfxfxxDqfzfyfxD   for all Xyx ,  

The notions of contraction and K-contraction are independent. In this thesis we define a special type of contractions called  -

generalized contractions for D*-metric spaces as follows: 

(2.4) Definition: A selfmap  f  of a D*-metric space (X, D*) is called a  -generalized contraction, if for every Xyx , , there 

exist non-negative numbers srq ,,  and t  (all depending on x and y) such that  

(2.5)      12
,




tsrq
Xyx

Sup
 and  

(2.6)  
 ),,(*),,(*.

),,(*.),,(*.),,(*.),,(*

fxfxyDfyfyxDt

fyfyyDsfxfxxDryyxDqfzfyfxD




 

 for all Xyx ,  

As already noted in the Remark, every contraction and every K-contraction is a  -generalized contraction. However the following 

examples show that there are some  -generalized contraction f on a D*-metric spaces (X, D* ) which are not contractions and /or K-

contractions. The following is an example of a  -generalized contraction which is not a contraction. 

III. MAIN RESULT 

Theorem: Suppose f  is a selfmap of a D*-metric space (X, D*) and X is  f-orbitally complete. If there is a positive integer k  such that  
kf  is a  -generalized contraction, then it has a unique fixed point Xu . In fact, 
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(3.1)  xf
n

u n




lim
 for any Xx  

and  

(3.2)  ),,(.),,(* fxfxxuuxfD k
n

n   for all Xx  and 1n , 

 where   1,...,2,1,0:,,*max),,( 1   krxfxfxfDfxfxx krkrr . 

Proof: Suppose that 
kf  is a  -generalized contraction of a  f-orbitally complete D*-metric space (X, D*). By Theorem 3.1, 

kf  has 

unique fixed point. Let u  be the fixed point of 
kf . Then we claim that  fu  is also a fixed point of 

kf . 

In fact, 

    fuuffuffuf kkk  1
 

By the uniqueness of fixed point of 
kf , it follows that ufu  , showing that u is a fixed point of  f . 

To prove the uniqueness of fixed point of  f , let Xv  be such that vfv  . Then 
kf v v  and the fact that 

kf  is a  -

generalized contraction, imply 

 

   
     
    ufufvDvfvfuDt

vfvfvsDufufurDvvuqD

vfvfufDvvuD

kkkk

kkkk

kkk

,,*,,*

,,*,,*,,*

,,*,,*







 

    
     
    uuvDvvuDt

vvvsDuuurDvvuqD

,,*,,*

,,*,,*,,*




 

      

   

 vvuD

vvuDtq

,,*.

,,*2





 

which implies that   0,,* vvuD  and hence vu  , proving uniqueness. 

To prove (2.3.2), let  n be any integer, then by the division algorithm, 0,0,  mkjjmkn  and Xx ,

  xffxf jmkn  . Since 
kf  is a  -generalized contraction, by (2.2.3) we have 

    

 

 xfxfxfD

xffxffxfD

uuxffDuuxfD

jkjkj
m

jkjkj
m

jmkn











,,*
1

,,*
1

,,*,,*








 

    1,...,2,1,0:,,*max
1

,,* 


  kixfxfxfDuuxfD jijii
m

n




 

    0  as n  

 Thus xf
n

u n




lim
 for any Xx . 
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To prove (2.3.3), let  n  be any positive integer, 
kf  is a  -generalized contraction and 0,0,  mkjjmkn  

with 









k

n
m , from (3.2) we have 

   

 

 

 

 xfxfxfD

xfxfxfD

xfxfxfD

xfxfxfD

uuxffDuuxfD

jkjkj
n

k

jkjkj
kjmk

k

jkjkj
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k

jkjkjm
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


































,,*.

,,*

,,*

,,*

,,*,,*

1
1

1

1









 

 Hence  

    1,...,2,1,0:,,*max,,* 1   kixfxfxfDuuxfD kikiik
n

n  , 

proving the theorem. 

(3.3) Theorem: Suppose 0x  is a point in the D*-metric space (X, D*) and B  is a closed ball of radius r  about 0x . Suppose 

XBf :  is a  

 -generalized contraction on B, X  is  f-orbitally complete and  

(3.4)      rfxfxxD  1,,* 000 , 

where   12
,




 tsrq
Xyx

Sup
  in which the numbers q, r,  s and t  are as in the Definition of  -generalized 

contraction. 

Then f  has a unique fixed point Bu . 

(3.5)   0

lim
xf

n
u n


  

and  

(3.6)   ruuxfD nn .),,(* 0   

 

Proof: Since 1 , from (3.4) it follows that Bfx 0 , considering 

...,,...,, 010

2

1201 xffxxxffxxfxx n

nn   , we shall show by induction that, this sequence is 

contained in B.  

Suppose Bxxxx m ,...,,, 210 . Then for mn ,...,3,2,1  and for n=0 and  p=m+1,  we have  
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   000110 ,,*
1

1
,,* fxfxxDxxxD mm


  

and by (3.4) we have  

      rrfxfxxDxxxD mm 





 .1
1

1
,,*

1

1
,,* 000110 


, 

showing Bxm 1 . Hence the sequence  ,...3,2,1,0:0 nxf n
 is contained in B. using the same procedure as in the Theorem 3.1, 

this sequence can be proved to be a Cauchy sequence and hence has a limit Xu , which must be a fixed point of  f . Since B is 

closed Bu . This completes the proof of the theorem. 
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