
Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 29 | P a g e

Data Stream Processing and Optimization Techniques

Survey in WSN
1
Mrs. J.Srimathi and

2
Dr.V.Valli Mayil,

1
AP(SG)/MCA, P.hd., Research Scholar, Bharathiar Univesity, TamilNadu, India

2
Head & Associate Professor, Dept. of Computer Science & Applications, Thanjavur, TamilNadu, India

Abstract: WSN is an fast growing technology and used in

potential applications including Traffic Monitoring, Military

applications, robotic etc. In Wireless Sensor Networks (WSNs),

energy Conservation is the most important factor because each

sensor devices operated with Battery. Such Wireless networks

have resource constraints on data communication, computation,

and energy Utilization. It is important to join and query the

readings generated by group of sensors, because recovering and

joining data from thousands of nodes is monotonous and

impractical.

Sensor nodes needs to process data in such a way that it can

generate useful information on spending only affordable amount

of energy. Sensors may respond uniquely from conventional

Database System. Wireless Sensor Network consists of nodes

which are distributed widely. These sensors are data source for

data stream processing in many cases. In this paper we discuss

on stream based query processing techniques used in DSMS and

evaluate continuous queries over data streams.

I. INTRODUCTION

Sensor network nodes are Stream Processing Systems (SPSs)

with limited capacities. Sensor data preprocessing and query

processing over data streams have been the subject of expanding

consideration today. Initially, sensors regularly convey data in

streams: they create data consistently, frequently at all around

characterized time interims, without Querying. The processing of

sensor data is that sensors are dissimilar from the well

architectural data-sources usual in a merchandise DBMS. They

do not provide data at consistent rates, the data is regularly

jumbled, and they have inadequate processor and battery assets

that the query engine needs to save at whatever point

conceivable.

Figure 1: Environment of Sensor Query processing

DBMS: Data Base Management is a One-time Query Execution

Model which store incoming tuples and submit one-time query.

Query Processing is done on already stored data and retrieve the

result.

Figure 2: Overview of DSMS Architecture

DSMS: Data Stream Management is a Technique which submit

continuous query from incoming streams. The input stream is

processed on the fly basis and produces the results continuously

to the Client. DSMS support online analysis of rapidly changing

data stream.

DataStream: DataStream means real-time, continuous, ordered

sequence of items, too large to store entirely not ending.

Figure 3: DataStream Management

One Time Query is a query evaluated once over the already

stored tuples and Continuous query is a query which waits for

future incoming tuples and evaluated continuously as new tuples

arrive.

Figure 4: One-time Vs Continous Query

II NEED FOR SENSOR QUERY PROCESSING

Limitations of Sensors: Constrained resource is a vital

characteristic of sensors. Inadequate resources include battery

limit, communication transfer speed, and CPU cycles.

Data Streaming: The feature of sensors is that they deliver

endless floods of data (at least, the sensors come up to the

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 30 | P a g e

shortage on battery power!). Any sensor query handling

framework should have the capacity to work specifically on that

data streams. Since streams are limitless, administrators can

never process over a whole streaming relation i.e. they cannot be

blocking. Numerous classical operators, such as sorts,

aggregates, and join algorithms therefore, cannot be utilized.

Rather, the query processor must incorporate uncommon

operators which convey results incrementally, handling

streaming tuples each one at a time or in small blocks.

Multiple Query Processing: The query processing must be

capable of monitoring continuous data and performs the

operations incrementally. It facilitates the updated results of

streaming operations.

III. FRAMEWORK OF CONTINUOUS QUERY

PROCESSING

Query is a declarative statement requesting a subset of

data. The query processor converts declarative queries into flow

of data operators which is called as query plan. Some of the

relational operators in queries are project, select, join, scans data

from base relations, indices etc.

 Query Optimizer means from the given declarative

query, build the best query plan by choosing operators, orders

and where to run queries. In wireless sensor, we want to combine

and aggregate data streaming from motes. The current issues

related to sensor database are unreliable data(come from on and

offline, variable bandwidth),Push and stream based data, limited

memory, power and bandwidth.

Figure 5: Components of Sensor Database

Continuous Queries:

Continuous queries are queries that are issued one after

another and run continuously over the database. Continuous

queries are particularly valuable in a domain like the Internet

involved a lot of often evolving data. Continuous queries are

persevering queries that permit clients to get new results when

they get to be accessible. While continuous query framework

changes an inactive web into a dynamic, they need to be able to

upkeep millions of queries due to the size of the Internet.

Figure 6: Continuous Query Processing

IV. SERVER SIDE SOLUTIONS FOR DATA STEAM

PROCESSING IN WIRELESS SENSOR

A. Fjord Query Processing

Fjord is a query plan abstraction to handle lack of

reliability and streaming, push based data. This system combines

push and pull arbitrary combinations. Fjords, conversely, provide

provision for integrating streaming data that is pushed into the

system with disk-based data which is pulled by conventional

operators. Fjords additionally permit to consolidate various

queries into a solitary arrangement and expressly handle

operators with numerous data sources and yields.

A fjord allows the query processors for the tolerant

property for handling irregular data streams. Data stream system

waits for the continuous flow of sensor data only when sensor

tuples are pushe. A Fjord is a advanced query information

structure which facilitates the process streaming information

with conventional, disk- based information sources. The vital

importance of Fjords is that they allow distributed query plans

which uses push and pull connections between operators.

Operators and Queues used in Fjord:

Queues:

A queue is a system which manages the data from one

operator to another. Queues have only one input and one output

and it does not change the data it carry.

Push or pull operator is executed by the queue that

connects a couple of operators: a push queue depends on its input

operator to data. A pull queue requests that the input operator

produce data in light of an approach to the part of the output

operator. Queues implement Push and Pull pattern. Fjords

additionally guide parallelism between operators by queues, state

machines and OS.

Figure 7: Fjord Query Processing Architecture

Ex: a) Pull from A to B: Suspend A, Schedule B until it

produces data. A cannot go forward until B produces data. b)

Components of Sensor Database

Server Side

 Query Parser

 Query Optimizer

 Query Executer

 Query Processor

 Catalog

Sensor Side

 Catalog
“Advertisement”

 Query Processor

 Network Management

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 31 | P a g e

Push from B to A: A polls, Scheduler thread invokes B until it

produces data. A can process other input while waiting for B.

Operators:

 Intially, non-blocking join operators can be utilized to

perimit incremental joins over floods of data. Xjoin , , Eddy and

Ripple Joins.

Xjoin Operator: XJoin Operator flushes records to disk if

memory gets limited(during arriving phase).During a reactive

phase, when data sources are blocked, XJoin utilizes already

flushed tuples to deliver further join results. During the last

cleanup stage after all inputs have been utilized, the XJoin

operator joins the rest of the tuples that were missed during the

previous stages.

XFilter: It evaluates the collection of XML document which has

similar user profile. In XFilter, the user interests are represented

in XPath language The XFilter engine uses a efficient search

index structure and a Finite State Machine (FSM) model to

retrieve the user profiles. The frame work uses Selective

Dissemination of Information (SDI) process for delivering the

documents based on user requests. There are different basic of

inputs in the framework are user profiles and data items (i.e.,

documents). User profiles deals the important information of

individual users. In most systems these profiles are originated by

the users through a Graphical User Interface. The user profiles

are changed into a format that can be conveniently stored and

assessed by the Filter Engine.

Figure 8: Xfilter Query processing system

The other key contributions to an SDI system are the records to

be filtered. Our work is emphasis on XML-encoded documents.

The Tukwila system [IFF99] additionally underpins versatile

adaptive query processing, in order to perform dynamic data

integration over independent data sources. The Tukwila system

supports operators that can be used to collect data over varying

network conditions. The pipelined hash join function is used to

integrate multiple hash table from disk. From the multiple point

of view it resembles the hash ripple join like XJoin. A pipelined

hash join works with two hash tables, as opposed to the single

hash table of a usual hybrid hash join. The collector operator

provides a robust strategy for integrating data from different

sources with common schemas. This rule is indicated by an

approach specified in Tukwila’s rule language.

Eddy: Eddy is a query processing mechanism which

continuously reorders operators in a query plan as it runs. The

eddy architecture is quite simple, obviating the need for

traditional cost and selectivity estimation, and simplifying the

logic of plan enumeration

Figure 9: Eddies Query processing system

An eddy is a pipelined approach in which Data streams are

collected from relations R,S and T. The eddy shows tuples to

operators; the operators run as autonomous threads, returning

tuples to the eddy. The eddy sends a tuple to the output only

when it has been taken care by all the operators. The eddy

adaptively selects an order to route each tuple through the

operators.

B. NiagraCQ (Niagra Continous Query Processing)

NiagaraCQ query processing mechanism proposed

continuous queries grouping techniques for efficient

evaluation.NiagraCQ uses the following

Query processing mechanism to handle continuous query

1. This is a updatable and incremental group optimization

approach with dynamic re-grouping. Continuous fresh

queries are executed with the available query.

2. NiagarCQ uses a query-split scheme that instantiate

negligiable changes to a broadly used query engine.

3. NiagaraCQ combines both change-based and timer-

based queries in a consistent way.

The goal of the Niagara project is to develop a

distributed database system for querying distributed XML data

sets using a query language like XML-QL. Niagara monitors

web XML sources and intermediate files on its local disk. It

handles the disk I/O for both ordinary queries and continuous

queries and holdup both push-based and pull-based data

sources. For push-based data sources, the Data Manager is

informed of a file change and notifies Event Detector actively.

Figure 10: NiagaraCQ Query processing system

Architecture of Niagara CQ:

 A continuous query manager, which is the essential

module of NiagaraCQ system. It facilitate a continuous

query interface to users and initiates the Niagara query

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 32 | P a g e

engine to execute fired queries. the Niagara data manager

was enhanced to maintain the incremental evaluation of

continuous queries

 A group optimizer that performs incremental group

optimization.

 An event detector that detects timer events and changes of

data sources.

C. Triggers

Triggers are event-condition-action rules, which are

used to analyse the events detected in the transactions and

perform the action accordingly. For launching trigger actions the

procedures are performed by SQL data manipulation commands

and user-defined stored procedures, continuous queries over

active tables. Trigger processing is one of the prominent

techniques in effective data management and processing

techniques for continuous queries over data streams, such as

specialized query optimization techniques.

D. Materialized Views

In the data stream environment, the materialized data

view is used for managing data replica. In distributed

environments, materialized views can be used to replicate data at

distributed sites and maintains the updates regularly.

E. Sensor Proxy

The significant part of our sensor query is the sensor

proxy, which acts as an interface between a single sensor and

query system. The purpose of proxy is to protect the sensor from

having to deliver data to several interested end-users. It

acknowledges and services queries for the sake of the sensor.

One behavior of the sensor proxy is to modify the

sample rate of the sensors, according to the user demand. In the

event,If users are only interested in a few tests per second,

there’s no purpose behind sensors to sample at several hertz. An

additional role of the proxy is to direct the sensor to aggregate

samples in predefined ways.

Sensor proxies are ever ending services that exist across

many user queries and map the tuples to different query

operators based on sample rates and filter predicates specified by

each query.

V. QUERY EVALUATION AND OPTIMIZATION

In the databases, a query optimizer is used to select the

“best” query plan for query execution. A continuous query

processor uses a execution plan for query optimization.

A. Pipelined operators

The selection operator can be used in data stream

context. It is used to evaluate portions of the query multiple

times, or use Scratch to hold temporary results during query

processing

B. Blocking Operators

A blocking operator is one that processes all the rows

completely before data is passed to other processes. Stream

iterator is used to process punctuated data streams which requires

initial state, step, pass, propagate, and purge functionality.

CONCLUSIONS AND RESEARCH PLAN

In this paper, we focused the various Continuous data

stream processing techniques in WSN and we have an research

idea in Continuous query processing which includes new

Adaptive query processing, online aggregation and

approximation techniques.

References

[1] Gupta and I. S. Mumick. Maintenance of

materializedviews: Problems, techniques, and

applications. IEEEData Engineering Bulletin, 18(2):3–

18, June 1995.

[2] P. B. Gibbons and Y. Matias. Synopsis data structures

for massive data sets. In External Memory Algorithms,

DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, volume 50, 1999.

[3] H. Garcia-Molina,W. J. Labio, and J. Yang. Expiring

data in a warehouse. In Proc. of the 1998 Intl. Conf. on

Very Large Data Bases, pages 500–511, August 1998.

[4] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan.

Clustering data streams. In Proc. Of the 2000 Annual

Symp. on Foundations of Computer Science, pages 359–

366, November 2000.

[5] P. B. Gibbons, Y. Matias, and V. Poosala.

Histogrambased approximation of set-valued query-

answers. In Proc. of the 1997 Intl. Conf. on Very

LargeData Bases, pages 466– 475, August 1997.

[6] Goetz Graefe. Encapsulation of parallelism in the

volcano query processing system. In Proc. of the 1990

ACM SIGMOD Intl. Conf. on Management of Data,

pages 102– 111, May 1990.

[7] G. Graefe. Query evaluation techniques for large

databases. ACM Computing Surveys, 25(2):73–170,

1993. J. M. Hellerstein, M. J. Franklin, et al. Adaptive

query processing: Technology in evolution. IEEE Data

Engineering Bulletin, 23(2):7–18, June 2000.

[8] R. Avnur and J. M. Hellerstein. Eddies: Continuously

adaptive query processing. In Proc. of the 2000 ACM

SIGMOD Intl. Conf. on Management of Data, pages

261–272,May 2000.

[9] S. Madden and M. J. Franklin. Fjording the stream: An

architecture for queries over streaming sensor data.

Technical report, June2001.

[10] J. M. Hellerstein, M. J. Franklin, et al. Adaptive query

processing: Technology in evolution. IEEE Data

EngineeringBulletin, 23(2):7–18, June 2000.

