
Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 13 | P a g e

Frequent Path Analysis of Organizational Website

Using AFPT
Dr. C.Gomathi M.C.A.,M.Phil.,Ph.D.,

Professor, Department of MCA., Vidyaa Vikas College of Engineering and Technology, Tiruchengode,

Namakkal Dist., Tamil Nadu, India

Abstract: Frequent path analysis discovers frequent path from

web logs. An important application of Data Mining is Web usage

mining for finding frequent path from web log accesses. Apriori

like pattern mining technique requires expensive multiple scans

of database. So now a days, Bpriori based algorithm is used. It is

faster than traditional pattern mining techniques. In this, Kongu

Arts and Science College (KASC) and KSR College of

Engineering (KSRCE) web log files are taken after

preprocessing for frequent path analysis. Here, an efficient

Advance Frequent Path Technique (AFPT) has been

proposed. This proposed algorithm modify the traditional

approach for improving efficiency, especially when the support

threshold becomes smaller and size of the database gets larger.

The proposed algorithm totally eliminates the storage cost during

mining and considerably reduces the execution time. The results

of experiments show the efficiency of the improved algorithm.

 The proposed algorithm is used to improve the design

of web sites, analyzing the student’s behaviors and developing

web sites according to different usage scenarios.

I. INTRODUCTION

 Apriori is an influential algorithm for mining frequent

item sets for boolean association rules. Apriori employs an

iterative approach known as a level-wise search, where k-

itemsets are used to explore (k+1)-itemsets. First, the set of

frequent 1-itemsets is found. This set is denoted L1. L1 is used to

find L2, the set of frequent 2-itemsets, which is used to find L3,

and so on, until no more frequent k-itemsets can be found. The

finding of each Lk requires one full scan of the database.

II. ALGORITHM APRIORI

 The following Figure1 shows the Apriori algorithm.

The first pass of the algorithm simply counts item occurrences to

determine the large 1-itemsets. A subsequent pass, say pass k,

consists of two phases. First, the large itemsets Lk-1 found in the

(k-1)th pass are used to generate the candidate itemsets Ck, using

the apriori-gen function.

1) L1 = {large 1-itemsets ;}

2) for (k = 2; Lk-1 ≠ 0; k++) do begin

3) Ck = apriori-gen(Lk-1); // New candidates

4) forall transactions t € D do begin

5) Ct = subset (Ck, t); // Candidates contained in t

6) forall candidates c € Ct do

7) c:count++;

8) end

9) Lk = {c € Ck | c:count ≥ minsup;

10) end

 11) Answer = k Lk;

Figure 1: Algorithm Apriori

Table 1: Notation

 K -

itemset

A An itemset having K items

Lk

G set of large K-itemsets (those with minimum

support)

 Each member of this set has two fields : i) itemset

and ii) support count

Ck

 Set of candidate k-itemsets (portentially large

itemsets)

 Each member of this set has two fields: i) itemset

and ii) support count

III. PROPOSED ALGORITHM – ADVANCED

 FREQUENT PATH TECHNIQUE (AFPT)

 The proposed AFPT algorithm takes the input

from the preprocessed log file. The log file transactions consist

of number of strings. To reduce the computation, the transactions

are divided into two halves, namely left and right consecutive

string using a center string. From left and right consecutive

string, the path which occur the maximum number of times is

declared as the frequent path.

Input : Preprocessed Log File (L)

Output : Frequent Path (FP)

Process :

Step 1: Read a Transaction (T) from Log File (L).

Step 2: For each Transaction (T), find center string CS[i], which

has .html extension.

Step 3: Find the number of occurrences of each center string

count (CS[i]).

Step 4: Find the maximum count (max) for all center string

count.CS[i]..

Step 5: Scan Log File to find Frequent Path (FP) such as

i. Scan the all predecessor page of center string page.

The result produced by the algorithm is given below:

Input:
Sample transactions = 12

203.101.67.192 - - [27/Aug/2007:11:05:51 +0530] "GET

/main.html HTTP/1.0" 200 6640 "http://www.kasc.ac.in/"

"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)"

210.211.182.11 - - [27/Aug/2007:11:05:50 +0530] "GET

/recent.html HTTP/1.1" 200 39189

"http://www.kasc.ac.in/college.html" "Mozilla/4.0 (compatible;

MSIE 6.0; Windows 98; digit_may2002)"

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 14 | P a g e

203.101.67.192 - - [27/Aug/2007:11:05:58 +0530] "GET

/cspgdept/cspg.html HTTP/1.0" 200 232

"http://www.kasc.ac.in/" "Mozilla/4.0 (compatible; MSIE 6.0;

Windows NT 5.0)"

203.101.67.192 - - [27/Aug/2007:11:05:58 +0530] "GET

/cspgdept/cspg.html HTTP/1.0" 200 2038

"http://www.kasc.ac.in/cspgdept/cspg.html" "Mozilla/4.0

(compatible; MSIE 6.0; Windows NT 5.0)"

203.101.67.192 - - [27/Aug/2007:11:05:58 +0530] "GET

/cspgdept/cspg.html HTTP/1.0" 200 36026

"http://www.kasc.ac.in/cspgdept/cspg.html" "Mozilla/4.0

(compatible; MSIE 6.0; Windows NT 5.0)"

203.101.67.192 - - [27/Aug/2007:11:09:07 +0530] "GET

/departments.html HTTP/1.0" 200 4000 "http://www.kasc.ac.in/"

"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)"

210.211.182.11 - - [27/Aug/2007:11:10:30 +0530] "GET

/college.html HTTP/1.1" 304 - "http://www.kasc.ac.in/"

"Mozilla/4.0 (compatible; MSIE 6.0; Windows 98;

digit_may2002)"

210.211.182.11 - - [27/Aug/2007:11:10:30 +0530] "GET

/main.html HTTP/1.1" 304 - "http://www.kasc.ac.in/"

"Mozilla/4.0 (compatible; MSIE 6.0; Windows 98;

digit_may2002)"

210.211.182.11 - - [27/Aug/2007:11:10:37 +0530] "GET

/cspgdept/cspg.html HTTP/1.1" 200 232

"http://www.kasc.ac.in/" "Mozilla/4.0 (compatible; MSIE 6.0;

Windows 98; digit_may2002)"

210.211.182.11 - - [27/Aug/2007:11:10:38 +0530] "GET

/cspgdept/cspg.html HTTP/1.1" 200 2038

"http://www.kasc.ac.in/cspgdept/cspg.html" "Mozilla/4.0

(compatible; MSIE 6.0; Windows 98; digit_may2002)"

203.101.67.192 - - [27/Aug/2007:11:15:49 +0530] "GET

/forthcoming.html HTTP/1.0" 304 - "http://www.kasc.ac.in/"

"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)"

203.101.67.192 - - [27/Aug/2007:11:19:27 +0530] "GET

/mgtdept/management.html HTTP/1.0" 200 41022

"http://www.kasc.ac.in/departments.html" "Mozilla/4.0

(compatible; MSIE 6.0; Windows NT 5.0)"

Output:

No. of occurrences of center string cspg.html = 5

Left and Right consecutive string of center string cspg.html is

 www.kasc.ac.in -> cspgdept -> cspg.html.

This is the frequent path for the above sample transactions.

The success of the Apriori algorithm and the Frequent Path tree

(FP-tree) method has inspired to consider the possibility and

appropriateness of applying their basic ideas and techniques to

solve the Generalized Center String problem. Note that the two

kinds of problems are different. While the problem of mining

association rules requires the detection of frequent itemsets, the

Generalized Center String problem asks for mining center strings

by finding all of their mutated copies limited by a distance d ≥ 0.

In this chapter, the mutated copies of a center string are also

called consensus strings, meaning that occur “quite often” in the

input sequences. Any sequence containing a consensus string is

called an origin of the string. Based on the observation that a

center string defined in GCS also has downward closure

property, and then it takes all substrings of the input sequences

as seeds and use them iteratively to find longer and longer

consensus strings by a level-wise search strategy. At each level

of search, the center strings are obtained by enumerating all

consensus strings. Using a level-wise search strategy gives a new

exact and efficient algorithm named Advance Frequent Path

Technique (AFPT).

IV. EXPERIMENTAL RESULTS

 The proposed algorithm is implemented in VB.NET and

all experiments were found on Intel Pentium running on

Microsoft Window XP profession. The web server log files from

KASC and KSRCE web server after preprocessing have been

taken for the experiments. This KASC and KSRCE log file sizes

are 5,498 and 6,200 records respectively. The proposed method

had applied on this preprocessed web log files to prepare

frequent pattern. The proposed mining algorithm is efficient than

the existing, by considering each and every log transaction as a

seed and identifies the center string. This eliminates the storage

cost during mining and considerably reduces the execution time.

 Figure 2 shows the frequent path visited from the 5,498

records after preprocessed. The datasets and algorithms are

tested with minimum support 5% against the different size

database 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500

and 5000 records. Sample screens are shown from Figures 2 to 7.

Figure 2 Frequent Path Analysis using Apriori with 1000 records

for KASC

http://www.kasc.ac.in/

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 15 | P a g e

Figure 3 Frequent Path Analysis using AFPT with 1000 records

for KASC

 In Figure 2, 1000 records with minimum threshold 5%

are taken to find frequent path. The Apriori algorithm takes 32

seconds as shown in Figure 2, where as the proposed AFPT

algorithm takes 27 seconds as shown in Figure 3, to perform the

execution. The percentage of AFPT over Apriori based on

execution time is 84.4%.

Figure 4 Frequent Path Analysis using Apriori with 2000 records

for KASC

Figure 5 Frequent Path Analysis using AFPT with 2000 records

for KASC

 In Figure 4, 2000 records are considered to find

frequent path. The novel system is executed with 2000 records

and minimum threshold 5%. The Apriori algorithm takes 60

seconds as shown in Figure 4, where as the proposed AFPT

algorithm takes 40 seconds as shown in Figure 5, to perform the

execution. The percentage of AFPT over Apriori based on

execution time is 71.2%.

Figure 6 Frequent Path Analysis using Apriori with 5000 records

for KASC

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 16 | P a g e

Figure 7 Frequent Path Analysis using AFPT with 5000 records

for KASC

 In Figure 6, 5000 records are considered to find

frequent path. The Apriori algorithm takes 90 seconds as shown

in Figure 6, where as the proposed AFPT algorithm takes 70

seconds as shown in Figure 7, to perform the execution. The

percentage of AFPT over Apriori based on execution time is

77.8%.

 Table 2 shows the execution time of AFPT and Apriori

algorithm for KASC webserver. From Table 2 and Figure 8, it

can be seen that the execution time increase as size of the

database increase. The decrease in the size of the data reduces

the execution time. In average, the percentage of AFPT over

Apriori based on execution time is 81.71%.

Table: 2 Execution time comparison with fixed minimum

support 5% for KASC

S.No

.

Reco

rds

Apriori

(time in

Seconds)

AFPT

(time

in

Second

s)

Percentage of

AFPT over

Apriori based

on execution

time (%)

1 500 18 16 88.9

2 1000 32 27 84.4

3 1500 48 36 75

4 2000 60 40 66.7

5 2500 68 59 86.8

6 3000 73 62 84

7 3500 78 64 82

8 4000 80 68 85

9 4500 84 69 82

10 5000 90 70 77.8

 Average 81.71

Figure 8 Execution time vs. different data sizes for KASC

 Table 3 shows the execution time of AFPT and Apriori

for KSRCE webserver. The percentage of execution time of

AFPT over Apriori is 81.45%. Figure 9 shows the graphical

representation of the execution time for different data sizes of

KSRCE web server.

Table 3 Execution time comparison with fixed minimum support

5% for KSRCE

S.

No

.

Records

Apriori

(time in

Seconds)

AFPT

(time in

Seconds)

Percentage of

AFPT over Apriori

based on execution

time (%)

1 500 20 17 85

2 1000 30 26 86

3 1500 61 40 65.6

4 2000 70 62 88.6

5 2500 76 64 84

6 3000 78 60 77

7 3500 80 67 83.6

8 4000 86 71 82.6

9 4500 91 75 82

10 5000 98 79 80.1

 Average 81.45

Figure.9 Execution time vs. different data sizes for KSRCE

 For KASC and KSRCE webserver, the execution time

of AFPT is less than the Apriori Algorithm.

CONCLUSION

In this chapter, AFPT mine tool has been developed

using VB.NET to find the frequent path for KASC and KSRCE

web log files. The proposed system analyzes the student’s

0

10

20

30

40

50

60

70

80

90

100

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Different Data Sizes (Records)

T
im

e
 i

n
 S

e
c
o

n
d

s

Apriori

AFPT

0

20

40

60

80

100

120

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Different Data Sizes (Records)

T
im

e
 i

n
 S

e
c
o

n
d

s

Apriori

AFPT

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 17 | P a g e

behavior. Using this analyzed data set the web usage behavior of

the students can be visualized. From this visualization, the new

knowledge is extracted to improve the organization and the web

site. The proposed system helps the organization in analyzing the

student’s behavior and also the proposed system reduces the

memory space and execution time to 81.71% and 81.45% as

shown in Table 2 and Table 3 respectively.

References

[1] Agrawal R., Imielinski T., Swami A: “Mining

Association Rules between Sets of Items in Large

Databases”, Proc. ACM SIGMOD ’93 Int. Conf on

Management of Data, Washingtion D.C., 1993, pp. 207-

216.

[2] R. Agrawal, and R. Srikant(1994) Fast Algorithms for

Mining Association. In Proceedings of the 20th

International Conference on Very Large Data Bases

(VLDB), Santiago, Chile, pp. 487-499.

[3] Gomathi.C., Moorthi M., Duraiswamy K. (2008),

Preprocessing of Web Log Files in Web Usage

Mining. The ICFAI journal of Information Technology,

Vol. 4, No. 1, pp. 55-66.

[4] Han,J., Kamber, M. (2001). Data Mining: Concepts and

Techniques. Morgan-Kaufmann Academic Press, San

Francisco.

[5] R. Kosala, and H. Blockeel(2000) Web Mining

Research: A Survey. In ACM SIGKDD Explorations,

Vol.2, pp. 1-15.

[6] Richards A.J.: ”Remore Sensing Digital Image Analysis.

An Introduction”, Springer Verlag, 1983.

[7] J.Srivastava, R.Cooley, M. Deshpande, and P.-N. Tan

(2000) Web Usage Mining:Discover and Applications

of Usage Patterns from Web Data. In ACM SIGKDD

Explorations, Vol. 1, No. 2, pp.12-23.

