
Conference Proceeding Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

International Conference on Modern Computing Trends and Technology (ICMCTT 2024), Organized by Joseph Arts and Science

College & Kamala College of Education, 1st & 2nd March, 2024 21 | P a g e

Recommendations for Personalized Search for

Movies in a Relational Database

1P. Malathi and 2Dr. R. Parameswari,
1Research Scholar, 2Professor,

1,2Department of Computer Science, School of computing sciences, Vels Institute of Science, Technology and

Advanced Studies (VISTAS), Chennai, India

Abstract--- PrefDB, a preference-aware relational system that

transparently and efficiently handles queries with preferences.

In its core, PrefDB employs a preference-aware data model and

algebra, where preferences are treated as first-class citizens.

We define a reference using a condition on the tuples affected,

a scoring function that scores these tuples, and a confidence

that shows how confident these scores are. In our data model,

tuples carry scores with confidences. Our algebra comprises

the standard relational operators extended to handle scores and

confidences. For example, the join operator will join two tuples

and compute a new score-confidence pair by combining the

scores and confidences that come with the two tuples. In

addition, our algebra contains a new operator, prefer, that

evaluates a preference on a relation, i.e., given as inputs a

relation and a preference on this relation, prefer outputs the

relation with new scores and confidences. During preference

evaluation, both the conditional and the scoring part of a

preference are used. The conditional part acts as ‘soft’

constraint that determines which tuples are scored without

disqualifying any tuples from the query result. In this way,

PrefDB separates preference evaluation from tuple filtering.

This separation is a distinguishing feature of our work with

respect to previous works. It allows us to define the algebraic

properties of the prefer operator and build generic query

optimization and processing strategies that are applicable

regardless of the type of reference specified in a query or the

expected type of answer.

Keywords---Preferences, Database Personalization.

I. INTRODUCTION

Considering query conditions as hard constraints is the

cornerstone of the Boolean database query model. A nonempty

answer to a database query is returned only if it satisfies all

query conditions. However, this exact match model is often too

strict. Imagine, for example, a movie rental application.

Asearch for recent movies would return several results making

ithard for the user to choose. Taking into account that the

userprefers comedies and action movies would help focus

herquery to fewer recent movies. On the other hand, if the

querycriteria are too restrictive, the query might produce no

resultsat all. In this case, it may be better to consider the

querycriteria as soft (i.e., preferences) and return results that

satisfysome of them. Several approaches to integrating

preferencesinto database queries have been proposed and can

be roughlydivided into two categories. Plug-in approaches

operate on topof the database engineand they typicallytranslate

preferences into conventional query constructs. Onthe other

hand, native approaches focus on supporting moreefficiently

specific queries, such as top-k or skyline queries,by injecting

new operators inside the database engine.Motivated by these

issues, we have developed PrefDB.

Preference-aware relational system that transparently and

efficiently handles queries with preferences. PrefDB employs a

preference-aware data model and algebra, where preferences

are treated as first-class citizens. We define a preference using

a condition on the tuples affected, a scoring function that

scores these tuples, and a confidence that show show confident

these scores are. In our data model, tuples carry scores with

confidences. Our algebra comprises the standard relational

operators extended to handle scores andconfidences. For

example, the join operator will join twotuples and compute a

new score-confidence pair by combiningthe scores and

confidences that come with the two tuples. Inaddition, our

algebra contains a new operator, prefer, thatevaluates a

preference on a relation, i.e., given as inputs arelation and a

preference on this relation, prefer outputs therelation with new

scores and confidences.PrefDB provides a personalization

framework that facilitatesthe enrichment of queries with

preference semantics such thatquery results match the specified

preferences. It offerssimplified engineering for applications

that require preferenceprocessing on top of a relational

database. Instead of hardwiringthe preference integration and

evaluation strategy intothe application logic .

PrefDBsupports declarative formulation and transparent

execution fordifferent types of queries with preferences. At the

same time,PrefDB’s hybrid implementation pushes preference

evaluationcloser to the database than plug-in approaches,

enablingoperator-level optimizations, without being as

obtrusive asnative ones, and remaining compatible with

standard relationalDBMSs. Contributions. The contributions of

this work can besummarized as follows:

• A preference-aware relational framework where

preferences

• Appear inside queries as first-class citizens and

preference

• Evaluation is captured as a special operator that can

be

• Combined with other relational operators.

II. REQUIREMENT

PrefDB takes user profile along with preferences and stores in

the database. Already there exists two traditional approaches

plug-in and native approach. In plug-in approach preferences

are translated into complex queries. In native approach

operators are injected into the query engine to execute the

queries along with the preferences. The disadvantage of plug-

in is,it operates above the query engine. Therefore it is

hardwired. The disadvantage in native approach is the entire

database core must be changed. PrefDB is the use of an

extended relational data model and algebra that allow

expressing different flavors of preferential queries.

In prefDB once the user has logged in, the user has to provide

his profile information with his interests. For example in movie

Conference Proceeding Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

International Conference on Modern Computing Trends and Technology (ICMCTT 2024), Organized by Joseph Arts and Science

College & Kamala College of Education, 1st & 2nd March, 2024 22 | P a g e

rental application the user provides his interests in terms of

favorite movies, actors, directors, genres. The movie will be

recommended by filtering the recommendation in terms of

high, medium and low level as per the user’s choice. In high

level recommendation there will be more number of constraints

,which results in retrieving closest match to the users interest

and preferences that is in a movie rental application you will

get the favorite movie .

Whereas, in medium and low level recommendation the

number of results will be more, if the level is medium then the

results will be based on favorite movie and director and if the

level is low the results will be based on all the four categories,

but the movies which satisfy any one constraint will be

selected. Similar to prefDB there is careDB which is used in

directing the users to the interested restaurants based on his

cuisine interest .Here, the external factors like traffic, climate,

waiting in restaurants, etc are also included. ThecareDB along

mapping software, location detection software (GPRS,

Antenna) processes the query and provides the user with the

best result of the preferred restaurant of the user in his

handheld device. The result will be based on the score and

confidence will vary the result based on the previous choice of

restaurants chosen by the customer.

 The constraints for the query formation will include the

environmental factors like climatic changes, road block, traffic

etc... And other external factors like long waiting time in

restaurants, restaurants closed preferred cuisine unavailable

etc... The users get the query result in their handheld device

with a map layout for showing the direction.

• It provides several query optimization strategies for

extended query plans.

• It describes a query execution algorithm that blends

preference evaluation with query execution, while

making effective use of the native query engine.

• PrefDB implements the framework and methods in a

prototype system,that allows the transparent and

efficient evaluation of preferential queries on top of a

relational DBMS.

• The extended query plan is constructed which

contains all the operators that comprise a query and

optimize it.

• The goal of query optimization is to minimize the cost

related with preference evaluation.

III. PROPOSED METHOD

The extended query plan is constructed which contains all the

operators that comprise a query and optimize it. Then, for

processing the optimized query plan, our general strategy is to

blend query execution with preference evaluation and leverage

the native query engine to process parts of the query that do not

involve a prefer operator. Given a query with preferences, the

goal of query optimization is to minimize the cost related with

preference evaluation. Based on the algebraic properties of

prefer, Toapply a set of heuristic rules aiming to minimize the

number of tuples that are given as input to the prefer operators.

We further provide a cost-based query optimization approach.

Using the output plan of the first step as a skeleton and a cost

model for preference evaluation, the query optimizer calculates

the costs of alternative plans that interleave preference

evaluation and query processing in different ways. Two plan

enumeration methods, i.e., a dynamic programming and a

greedy algorithm are proposed. For executing an optimized

query plan with preferences, Todescribe an improved version

of our processing algorithm (GBU) (an earlier version is

described in. The improved algorithm uses the native query

engine in a more efficient way by better grouping operators

together and by reducing the out-of-the-engine query

processing.

A. Advantages of Proposed System

• A preference aware relational framework is done.

• A prototype system implementation is done.

• Cost based query optimization where the cost is

reduced.

• Improved query execution improves the performance.

• Score and confidence method is used.

IV. ARCHITECTURE

A. Introduction

System architecture is the conceptual model that defines

the structure, behavior, and more views of a system. An

architecture description is a formal description and

representation of a system, organized in a way that supports

reasoning about the structures and behaviors of the system. The

system comprised the components, the externally visible

properties of those components, the relationships (e.g. the

behavior) between them. It can provide a plan from which

products can be procured, and systems developed, that will

work together to implement the overall system. There have

been efforts to formalize languages to describe system

architecture; collectively these are called architecture

description languages (ADLs).

Figure 4.1 System Architecture

V. METHODOLOGY

A. Registration & interest sum up:

During Registration, each and every user will provide their

basic information for authentication. After that, user has to

provide their profile information and their interests about their

movie. Based upon their, and with our movie datasets, we can

be able to analyze their interest about the movie and have to

provide the recommended movies to the particular user.

https://en.wikipedia.org/wiki/Conceptual_model
https://en.wikipedia.org/wiki/Structure
https://en.wikipedia.org/wiki/Behavior
https://en.wikipedia.org/wiki/View_model
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Structure
https://en.wikipedia.org/wiki/Behavior
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Architecture_description_languages
https://en.wikipedia.org/wiki/Architecture_description_languages

Conference Proceeding Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

International Conference on Modern Computing Trends and Technology (ICMCTT 2024), Organized by Joseph Arts and Science

College & Kamala College of Education, 1st & 2nd March, 2024 23 | P a g e

B. Query optimization & execution:

Extended relational operators and the prefer operator do not

change how tuples are filtered or joined; for instance, prefer

operator does not filter any tuples. Therefore our extended

relational operators do not affect the non-preference related

cost. Thus, we can expect that the join order that is suggested

by the native query optimizer for a query if no prefer operators

were present, will still yield good performance for the non-

preference part of the same query with the prefer operators.

Based on this observation, we will keep the suggested join

order and we will consider the non-preference related cost as

fixed. Then, the goal of our query optimizer will be to

minimize the cost related with preference evaluation.

Typically, the most critical parameter that shapes the

processing cost of query evaluation is the disk I/Os, which is

proportional to the number of tuples flowing through the

operators in the query plan. Assuming a fixed position for the

other operators, the goal of our query optimizer is essentially to

place the prefer operators inside the plan, such that the number

of tuples flowing through the score tables is minimized. The

execution engine of PrefDB is responsible for processing a

preferential query and supports various algorithms.

C. Query formation

A preferential query combines p-relations, extended relational

and prefer operators and returns a set of tuples that satisfy the

boolean query conditions along with their score and confidence

values that have been calculated after evaluating all prefer

operators on the corresponding relations. Intuitively, the better

a tuple matches preferences and the more (or more confident)

preferences it satisfies, the higher its final score and confidence

will be, respectively. The query parser adds a prefer operator

for each preference. Finally, the query parser checks for each

preference, whether it involves an attribute (either in the

conditional or the scoring part) that does not appear in the

query and modifies project operators, such that these attributes

will be projected as well.

D. Query reformulation:

Query Reformulation is a process of modifying the Object

Oriented Query with users Current Preference which is

extracted previously from users session information with some

special operators.Here as soon as the Object Oriented Query is

injected in the execution engine. It will provide a Result set

which will be scrootinized and sorted set.No need to perform

Filtering and sorting operations which is done in multiple

levels in existing systems for redundant data elimination and

ranking the most appropriate results thereby achieving

personalization in user results.

VI. EXPERIMENTAL RESULT AND ANALYSIS

It produces the consequences by comparing the proposed

system with the existing system. The movie recommendation

based on the user’s interest is being compared by some of the

constraints.

The existing system which uses the plug-in and native

approaches are to be less effective when compared with the

proposed system. In plug-in methods, the way preferences is

used, for example as additional query constraints or as ranking

constructs, the query execution flow as well as the expected

type of answer (e.g., top-k or skyline) are all hard-wired in this

method, which hinders application development and

maintenance. On the other hand, native methods consider

preference evaluation and filtering as one operation. Due to this

tight coupling, these methods are also tailored to one type of

query.

Fig Result analysis

Furthermore, they require modifications of the database core,

which may not be feasible or practical in real life. Thus, these

both approaches do not offer a holistic solution to flexible

processing of queries with preferences and it is less effective.

The proposed system overcomes this problem by introducing

the PreDB which helps the user by providing their interests in

terms of favorite movies, actors, directors, genres. The movie

is recommended based on filtering the recommendation in

terms of high, medium and low level as per the user’s choice

where it produces to be very effective. Based on this, the

search results in the existing system produces the search for the

recent movies returns several results making it hard for the user

to choose.

Taking into account that the user prefers comedies and action

movies would help focus on query to fewer recent movies. On

the other hand, if the query criteria are too restrictive, the query

might produce no results at all. This makes the search to be

very expensive. Whereas, the proposed system produces the

exact search results based on the user’s choice by the

preference evaluation and filtering. This results to be an

inexpensive process. Another important criteria is that the

proposed system even produces the results of a movie

recommendation for the user which is external to the database

whereas the existing system produces the results only which

contains in the database and produces no results when external

to the database.

CONCLUSION AND FUTURE ENHANCEMENT

A preference-aware data model is presented where preferences

appear as a first-class citizens and preference evaluation is

captured as a special ‘prefer’ operator. The algebraic properties

of the new operator is applied to develop a cost-based query

optimizations and holistic query processing methods. It adds

the advantage by providing the flexibility in handling the

different flavors of preferential queries, and also it is closer to

the database than plug-in approaches and non-obtrusive to the

database engine.

In this work we presented a preference-aware data model

where preferences appear as first-class citizens and preference

valuation is captured as a special ‘prefer’ operator. We studied

the algebraic properties of the new operator and applied them

in order to develop cost-based query optimizations and holistic

query processing methods. We presented a framework that is

(i) flexible in handling different flavors of preferential queries,

(ii) closer to the database than

Conference Proceeding Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

International Conference on Modern Computing Trends and Technology (ICMCTT 2024), Organized by Joseph Arts and Science

College & Kamala College of Education, 1st & 2nd March, 2024 24 | P a g e

plug-in approaches, (iii) yet non-obtrusive to the

databaseengine. Our experiments using a prototype

systemimplementation demonstrated the performance

adventages ofour methods when compared with two variation

of a plug-instrategy.In the future, we aim to explore combining

the preferoperator with the rank and rank join operators

defined in orderto enable early pruning of results based on

score or confidenceduring query processing.

References

[1] G. Adomavicius and A. Tuzhilin (Jun. 2005), “Toward the

next generation of recommender systems: A survey of

the state-of-the-art and possible extensions,” IEEE Trans.

Knowl. Data Eng., vol. 17, no. 6,pp. 734–749,.

[2] R. Agrawal, R. Rantzau, and E. Terzi,(2006) “Context-

sensitive ranking,” in Proc. SIGMOD, Chicago, IL, USA,

pp. 383–394.

[3] R. Agrawal and E. L. Wimmers, (2000) “A framework for

expressing and combining preferences,” in Proc.

SIGMOD, Dallas, TX, USA, pp. 297–306.

[4] H.Andreka, M.Ryan, and P.-Y.Schlobbens,(2002) "

Operators and Laws for Combining Preferential

Relations,Journal of Logic and Computation"12(1).pp13-

53.

[5] A. Arvanitis and G.Koutrika,(2012) “Towards preference-

aware relational databases”. inProc. IEEE 28th ICDE,

Washington, DC, USA,.

[6] A. Arvanitis and G. Koutrika, (2012) “PrefDB: Bringing

preferences closer to the DBMS,” in Proc. SIGMOD, New

York, NY, USA, pp. 665–668.

[7] A. Arvanitis and G. Koutrika, (2012) “PrefDB: Supporting

preferences as first-class citizens in relational databases,”

Tech. Rep.,

[8] A. Arvanitis and G. Koutrika, (2012) “Towards

preference-aware relational databases,” in Proc. IEEE 28th

ICDE, Washington, DC, USA, pp. 426–437.

[9] W.-T. Balke, and U. Guntzer, (2004) "Multi-Objective

Query Processing for Database Systems".In VLDB.

[10] S. Börzsönyi, D. Kossmann, and K. Stocker, (2001) “The

skyline operator,” in Proc. 17th ICDE, Heidelberg,

Germany, pp. 421–430.

[11] J. Chomicki, (Dec. 2003) “Preference formulas in

relational queries,” ACM Trans. Database Syst., vol. 28,

no. 4, pp. 427–466,

[12] V. Christophides, D. Plexousakis, (2003) M. Scholl, and S.

Tourtounis, “On labeling schemes for the semantic web,”

in Proc. 12th Int.Conf. WWW, Budapest, Hungary, pp.

544–555.

[13] W. W. Cohen, R. E. Schapire, and Y. Singer, (Jan. 1999)

“Learning to order things,” J. Artif. Intell. Res., vol. 10,

no. 1, pp. 243–270.

[14] R. Fagin, A. Lotem, and M. Naor,(2001) “Optimal

aggregation algorithms for middleware,” in Proc. 20th

PODS, Santa Barbara, CA, USA, pp. 102–113.

[15] P. Georgiadis, I. Kapantaidakis, V. Christophides, E. M.

Nguer, and N. Spyratos, (2008) “Efficient rewriting

algorithms for preference queries,” in Proc. IEEE 24th

ICDE, Cancun, Mexico, pp. 1101–1110.

[16] S. Holland, M. Ester, and W. Kießling, (2003) “Preference

mining:A novel approach on mining user preferences for

personalized applications,” in Proc. 7th European Conf.

PKDD, Cavtat- Dubrovnik, Croatia, pp. 204–216.

[17] T. Joachims, (2002) “Optimizing search engines using

clickthrough data,” in Proc. 8th KDD, Edmonton, AB,

Canada, pp. 133–142.

[18] W. Kießling, (2002) “Foundations of preferences in

database systems,” in Proc. 28th Int. Conf. VLDB, Hong

Kong, China, pp. 311–322.

[19] W. Kießling and G. Köstler, (2002) “Preference SQL -

Design, implementation, experiences,” in Proc. 28th Int.

Conf. VLDB, Hong Kong, China, pp. 990–1001.

[20] G. Koutrika and Y. E. Ioannidis, (2004) “Personalization

of queries in database systems,” in Proc. 20th ICDE,

Washington, DC, USA, pp. 597–608.

[21] M. Lacroix and P. Lavency, (1987) “Preferences: Putting

more knowledge into queries,” in Proc. 13th Int. Conf.

VLDB, Brighton, U.K., pp. 217–225.

[22] J. Levandoski, M. Mokbel, and M. Khalefa,(2010)

“FlexPref: A framework for extensible preference

evaluation in database systems,” in Proc. IEEE 26th ICDE,

Long Beach, CA, USA, pp. 828–839.

[23] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song, (2005)

“RankSQL: Query algebra and optimization for relational

top-k queries,” in Proc.SIGMOD, Baltimore, MD, USA,

pp. 131–142.

[24] C. Mishra and N. Koudas.(2008) "Stretch ’n’ shrink:

Resizing queries to user preferences". In SIGMOD, pages

1227–1230,

[25] D. Papadias, Y. Tao, G. Fu, and B. Seeger.(2003) "An

optimal and progressive algorithm for skyline queries". In

SIGMOD, pages 467–478.

[26] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.

Lorie, and T. G. Price, (1979) “Access path selection in a

relational database management system,” in Proc.

SIGMOD, pp. 23–34.

[27] K. Stefanidis, M. Drosou, and E. Pitoura.(2010) " Perk:

personalized keyword search in relational databases

through preferences". In EDBT, pages 585–596.

[28] K. Stefanidis, E. Pitoura, and P. Vassiliadis, (2007)

“Adding context to preferences,” in Proc. IEEE 23rd

ICDE, Istanbul, Turkey, pp. 846–855.

[29] R.Torlone, and P.Ciaccia, (2002) "Which Are My

Preferred Item" In Recommendation & Personalization in

eCommerce

[30] Y. Yuan, X. Lin, Q. Liu, W. Wang, J.X. Yu, and Q.

Zhang, (2005) " Efficient Computation of the Skyline

Cube", In VLDB.

