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Abstract—As one of the key technologies for robots to 

perceive real-world environments, the visual Simultaneous 

Localization And Mapping (SLAM) system utilizes only 

geometric spatial features in the process of mapping, which is 

unable to construct static dense maps in complex dynamic 

environments and is difficult to eliminate large quantities of 

drifting point clouds. To solve the problem, this paper proposes 

a map construction method based on a visual SLAM system 

and convolutional neural network. First, the dynamic area are 

comprehensively determined by object detection networks and 

geometric constraints, after which they are eliminated to 

remove the negative impact on pose estimation. Second, the 

dense building map is added to the back-end of our system, 

which combines the dynamic areas information to reject the 

drifting point cloud of motion, and then the camera pose and 

environment images are utilized to generate the dense map by 

stitching the point cloud together. Experimental results on 

public datasets show that our algorithm is able to construct 

accurate maps of dense static environments in dynamic 

environments, while effectively improving the SLAM system's 

localization accuracy and maintaining real-time capability of 

the system.  

Keywords—Visual SLAM; Pose estimation; Feature match; 

Object detection; Three-dimensional point cloud map;  

I.  INTRODUCTION 

Over recent years, benefiting from tremendous advances in 
artificial intelligence technology, intelligent robots are more 
widely applied. And as one of the key technologies for robots 
to autonomously localize and sense environmental information, 
the SLAM system is capable of estimating its position during 
its movement while constructing the map information of the 
surrounding environment. In traditional SLAM systems, map 
construction is mainly targeted at localization tasks, i.e., map 
information is used to assist in improving the localization 
accuracy of the system, which is usually in the form of sparse 
point cloud maps, which are unable to recognize semantic 
information in the environment, and cannot be applied to the 
needs of advanced tasks such as robot navigation, obstacle 
avoidance, and three-dimensional reconstruction. In addition, 
conventional SLAM systems are constructed relying on the 
assumption that static environments remain unchanged, yet the 
real world is always complicated and volatile. For example, 
people walking indoors, vehicles traveling on outdoor roads, 
and so on. The localization precisions of traditional SLAM 
systems in the above dynamic situations will be severely 
degraded, which will lead to the drift of the constructed maps 
and make them unusable for subsequent advanced tasks. 
Therefore, how to construct high-density environmental maps 
containing only static point clouds has become a critical 
problem to be solved. Due to the great progress of deep 
learning technology, many researchers have combined deep 
learning algorithms to construct semantic environment maps 
oriented to dynamic scenes, which mainly use convolutional 
neural networks to extract semantics from the images of the 

input system and fuse them with the 3D point cloud to exclude 
the drifting dynamic point cloud in order to construct a dense 
point cloud map that contains only static objects. McCorma et 
al. [1] proposed a fused semantic algorithm for environmental 
map construction using convolutional neural networks, which 
corrects the map in real-time by introducing semantic 
segmentation threads and optimizes the results of semantic 
segmentation based on the bit position information estimated 
between frames; however, such methods are too demanding in 
terms of computational resources, which leads to serious 
degradation of the system's real-time performance and makes it 
difficult to deploy the application practically on a robotic 
platform. In order to address this problem, Mao et al. [2] 
proposed a semantic map construction algorithm based on 
RTABMAP [3] and YOLO[4], which firstly uses YOLOv2 to 
detect the target on the color image to obtain the rough position 
information of the object, and then adopts the Canny edge 
detection method to refine the segmentation of the object 
region on the depth image, which effectively reduces the 
computational demand of the system and improves the SLAM 
system's real-time capability. Ehlers et al. [5] proposed a 
semantic map construction method for automatically adjusting 
map building parameters, which automatically adjusts the 
optimal parameters for building maps based on the results of 
semantic recognition, thus realizing the task of semantic map 
construction in arbitrary scenarios. However, in complex and 
changing dynamic environments, a single invariant parameter 
usually cannot meet the practical requirements. In view of this, 
many works have proposed semantic map construction 
methods oriented to dynamic environments using lightweight 
object detection. Hoang et al. [6] proposed a semantic map 
construction algorithm with strong robustness to address the 
problem of difficulty in estimating the accurate camera pose 
due to the negative influence of moving objects in dynamic 
environments, but since the system relies on the Elastic Fusion 
[7] algorithm, it is also constrained by computational resources, 
which leads to poor real-time capability of the system. 
Hosseinzadeh et al. [8] proposed a quick and accurate semantic 
mapping construction algorithm, which utilizes two 
convolutional neural networks for planar segmentation and 
parametric regression, respectively, and combines them with 
the object detection network for detection and tracking. 

Although the above methods are able to accomplish the 
task of semantic map construction in static environments, 
however, in dynamic environments the maps constructed by 
these systems have a large number of drifting dynamic point 
clouds, and use object detection algorithms to extract the 
boundary position information of objects in the environment, 
there will be a problem that the pixels in the moving area 
contain other objects. For improvement of the above problems, 
we propose a dense map construction algorithm built on a 
lightweight object detection network and visual SLAM, which 
uses an improved non-maximum suppression combined with 
the object detection network to extract semantic information 
about real-world environment; and designs an initial dynamic 
point detection method based on feature points to address the 
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problem of negative interruptions with moving objects; and 
finally, carries out the real dynamic area in the back-end of the 
improved system of culling, and then use the accurate camera‟s 
pose information generated by the improved system to stitch to 
generate a global static dense point cloud map of the 
environment. Through experimental results on the public 
dynamic dataset indicate that our proposed system can 
effectively improve the localization accuracy, efficiently 
generate a global static dense 3D point cloud map of dynamic 
environment, and maintain real-time performance. 

II. SYSTEM DESCRIPTION 

A. System Overview 

The proposed improved system of this paper is constructed 
based on ORB-SLAM3 [9] and the overall overview of our 
proposed system is illustrated in Fig. 1.  

 

Fig. 1. Overview of the proposed system 

First, ORB (Oriented FAST and Rotated BRIEF) feature 
points are extracted from the RGB image in the tracking thread 
of the visual odometry, and the sparse optical flow is utilized 
for feature matching and frame-to-frame pose estimation 
tracking, while embedding a lightweight object detection 
network YOLOv5 (The fifth version of You Only Look Once) 
to extract semantic information of objects in the environment. 
Second, the initial dynamic points present in the dynamic 
scenario are determined with standard geometric constraints. 
Last, a dense mapping thread is added to the back end of our 
system to generate an initial 3D point cloud from depth images 
and color images; then the motion regions in the environment 
are comprehensively determined, and the drifting point cloud 
in the real dynamic region is eliminated, and the semantic 
information of the keyframes is synchronously combined to 
stitch together to generate a static dense 3D point cloud map 
with global continuity and consistency. In addition, because the 
proposed system improves the effectiveness of short-term and 
medium-term data correlation, the system's localization 
accuracy in complex dynamic environments is greatly 
improved, especially in high dynamic environments, and 
maintains high system real-time performance.  

B. Feature Matching based on Sparse Optical Flow 

ORB feature points, as a kind of corner points with good 
scale invariance, are extensively used for the SLAM systems. 
However, in the process of feature extraction and matching in 
the front end of the visual SLAM, if the ORB feature points are 
extracted for all consecutive image frames, it will take up a 
large amount of computational resources, thus reducing the 
real-time performance of the whole system. Therefore, this 
paper proposes a feature tracking method based on LK (Lucas-
Kanade, LK) optical flow to reduces the time-consumption of 
feature matching, which effectively reduce the computational 
consumption of feature extraction and matching, and improves 
the adaptability of the system to the weak texture degradation 
environment. Although the sparse optical flow is susceptible to 
changes in light intensity, since the Oriented FAST key points 
with good light invariance are used as feature points in this 
paper, the optimization is performed by fusion, which 

maintains the robustness of feature extraction and accelerates 
feature matching. The pixel points around the image feature 
points change over time and are called sparse optical flow. 
Obviously, if the image is set as a function of pixels with 
respect to time t, the grayscale of a pixel point can be 
expressed as I(x, y, t). According to the assumption of 
grayscale invariance for the current moment t to the moment 
t+dt. Assuming that a pixel point moves to (x+dx, y+dy), the 
gray level between adjacent frames can be expressed as: 

    , , , ,I x dx y dy t dt I x y t     (1) 

Then a firstorder Taylor expansion of the left-hand side of 
the above equation is obtained: 
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Since the assumption of grayscale invariance assumes that 
the same spatial point gets pixel grayscale is invariant from 
position to position, it can be obtained: 
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The above equation is divided by dt on both sides 
simultaneously to get: 
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The chi-square matrix is of the form: 
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Where dx/dt denotes the velocity u of the pixel point in the 
x-axis; dy/dt is the velocity v of the pixel point in the y-axis; Ix 

and Iy are the gradient of the pixel in the x-direction and y-
direction, respectively; and It is the bias of the pixel's gray 
level with respect to time. After that, the sliding window 
method is utilized to calculate the motion velocity of pixels for 
a fixed-size image block, assuming that a pixel block of size 
s*s contains s

2
 pixel points, which are approximated to have 

the same motion, and the overdetermined linear equation is 
constructed as: 
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By solving the above super-definite equation, we can 
obtain the moving speeds of pixels between neighboring 
frames, so as to match the pixels of the previous frame to the 
relevant pixel positions in the current frame, and finally 
complete the feature matching between neighboring frames. In 
practical applications, multi-layer optical flow image pyramids 
are often combined to improve the feature mismatching 
problem. In our system, the amount of image pyramid layers is 
set to 6, and the scaling multiplier is set to 0.5. 

C. Initial Dynamic Point Detection 

For dynamic features in the environment, the judgment is 
mainly based on the extent to which they violate the geometric 
constraints in the static environment. Therefore, in this paper, 
the magnitude of the distance from the projection point of an 
image feature to the corresponding polar line is used as the 
basis for judging the extent to which the projection point 



  

  

International Journal of Trend in Research and Development, Volume 11(2), ISSN: 2394-9333 

www.ijtrd.com 

IJTRD | Mar – Apr 2024 
Available Online@www.ijtrd.com     28 

conforms to the pairwise pole constraints, and thus detecting 
abnormal dynamic outliers to be provided to the subsequent 
information fusion modules.  

First, the feature matching point pairs between neighboring 
frames are obtained according to the improved FAST key point 
extraction and feature matching method described above, 
assuming that the matching feature point pairs are p1 and p2, 
respectively, and the chi-square coordinates of these image 
pixel points are: 
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Second, standard geometric constraints are constructed for 
the matched point pairs, and the standard pair of epipolar 
constraint equations are shown in the following equation: 

 
2 1

0
T

p F p   (8) 

The Random Sample Consensus approach is utilized for 
solving the fundamental matrix of the interframe 
transformation and further filter the exact matching point pairs 
to compute again the exact fundamental matrix F. Then the 
matching point pi in the previous frame in the neighboring 
frames is mapped to the corresponding polar line l in the 
current moment  by the exact fundamental matrix F. Then the 
corresponding polar equation can be expressed as: 

  ,
, ,1

T

i j i i i
l F p F u v     (9) 

Assuming that the linear equation coefficient vector of the 
polar line is (Ai, Bi, Ci), the equation of the polar line in the 
current frame is: 

 0
i i i

A x B y C    (10) 

Where x, y denote the horizontal and vertical coordinates of 
the matching feature point in the corresponding pixel 
coordinate system, respectively. Finally, if one of the feature 
points obtained from the matching is distributed on a dynamic 
object, the standard geometric constraints will no longer be 
strictly satisfied. As a consequence, the feature point will not 
be located on the corresponding polar line, i.e., there is a 
certain distance deviation, then the pixel distance d between 
the dynamic feature point and its corresponding polar line can 
be calculated using the following equation: 
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If the pixel distance from the feature point to the polar line 
exceeds a specific threshold, the feature point can be 
considered a potential dynamic feature point; conversely, the 
feature point is considered a static feature point. In our system, 
the distance threshold is set to 1 pixel. In summary, the 
dynamic feature point detection method based on geometric 
constraints can effectively extract dynamic feature points 
within moving objects present in the environment without 
relying on accurate internal camera parameters. These rough 
initial dynamic feature point information will provide key 
posteriori constraints for the subsequent information fusion. 

D. Semantic Extraction 

Compared with traditional target detection algorithms, such 
as support vector machines, machine learning, and other 
solutions, deep learning-based object detection algorithms have 
the benefits of fast speed, high precision, and extensive 
recognition range. Nowadays, the excellent objectt detection 

frameworks can be mainly categorized into: Faster R-CNN 
[10], SSD [11], and YOLO algorithms. Among them, the 
YOLO series of algorithms has become one of the most 
representative algorithms in the field by virtue of its high 
efficiency and accuracy, at the same time, in order to meet the 
accuracy and real-time requirements of the SLAM system, this 
paper chooses the fifth version of the YOLO algorithm as the 
backbone network for semantic extraction, and its network 
structure is presented in Fig. 2.  

As shown in the above figure, the network structure is a 
fully convolutional network containing only the convolutional 
kernel normalization layer and no fully connected layer. It is 
mainly composed of Backbone and Head. Firstly, features are 
extracted by attention mechanism and multi-layer convolution 
in the Backbone network, and more detailed and delicate 
features are obtained by combining C3 (three special 
convolutional layers) with downscaling and upscaling of the 
features, and finally the multi-scale features are fused using 
SPP (Spatial Pyramid Pooling, SPP). Next, this information is 
up-sampled and spliced at the Head, and by minimizing the 
loss error, the feature maps of classification probability, target 
bounding box, and target confidence are finally obtained, 
respectively. The loss error function expression of this 
algorithm is shown in the following equation: 

 
obj rect clc

Loss a loss b loss c loss       (12) 

In the above equation, lossobj, lossrect, lossclc represent the 
confidence loss, bounding box loss, and classification loss, 
respectively; where a=0.4, b=0.3, and c=0.3 are the weight 
factors of the corresponding losses, respectively. In fact, the 
SLAM system focuses more on the obtained target bounding 
box information, so the proposed system of this paper focuses 
on improving the recall of the object detection algorithm to 
obtain more object bounding box as the prior semantics. 

 

Fig. 2. Network structure of YOLOv5 

In addition, it is worth noting that the model used in this 
paper was pre-trained on the MS COCO [12] dataset, hence 
our system is able to effectively recognize 80 object categories 
commonly found in the real world, such as persons, cars, 
bicycles, and other objects. According to the probability of 
these objects to undergo autonomous motion, we categorize 
them into high dynamic objects and low dynamic objects, 
which are classified as shown in Table 1, and different weights 
will be assigned to the dynamic objects with different motion 
attributes to participate in the subsequent fusion.  

Table 1: Classification of properties of object motion 

Motion Properties Object Category 

High dynamic person, vehicles, animals, and 19 other objects 

Low dynamic desk, computers, traffic signs, and 61 other objects 
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E. Dynamic Area Rejection 

In the proposed system in this paper, the core idea is to 
accurately eliminate the negative influence of dynamic features 
on the position estimation by fusing the semantic and 
geometric constraint information in the environment, so as to 
promote the system's localization accuracy under real dynamic 
environments, and to utilize the filtered dynamic regions to 
filter the drifting point cloud, and finally to generate a static 
dense global point cloud map. In fact, since the motion of 
objects is relative and dynamic objects usually do not keep a 
single motion state unchanged, different dynamic attributes are 
assigned to the objects, which in turn fuses the initial dynamic 
points and the dynamic object bounding box, and finally 
obtains the positional information of the real motion region. 
The specific process is shown in Fig. 3. 

 

Fig. 3. The flow of real motion area judgment 

When the real dynamic area is obtained according to the 
above method, the SLAM system will reject the feature points 
within the real dynamic region in the front end of the visual 
odometry to complete camera localization. Then, the accurate 
camera pose information and environment images are utilized 
to build the 3D dense map. Meanwhile, the dynamic area is 
fused in the mapping thread of our system, the drifting point 
cloud within the dynamic area is filtered, and a dense map of 
static environment is finally constructed. 

III. EXPERIMENTATION AND EVALUATION 

To validate the effectiveness of the proposed system's 
localization and mapping within dynamic scenes, this paper 
experiments and evaluates the system's localization trajectory 
and map-building effect on the TUM [13] dynamic dataset. In 
addition, the dynamic point detection approach is tested in the 
dataset and the effect of dynamic areas judgment is 
demonstrated. The computing platform is a desktop computer, 
the software operating system is Ubuntu18.04, the CPU type is 
Intel i7-13700, and the RAM memory size is 32 GB. Without 
the requirement of GPU acceleration, the YOLOv5 network 
embedded in our SLAM system could achieve semantic 
extraction at about 20 FPS (Frames Per Second, FPS) while 
maintaining the real-time capability of our proposed system. 

A. Effect of Dynamic Point Detection 

The system was tested in the outdoor dynamic scenarios, 
where we tested the effectiveness of dynamic point detection 
and selected real dynamic points in neighboring image frames 
in the outdoor dynamic environments, respectively. Fig. 4 
illustrates the effect of dynamic point detection. 

 

(a) ORB feature point 

 

(b) Sparse optical flow matching 

 

(c) Dynamic feature point 

Fig. 4. The effect of dynamic point detection in the outdoor environment 

In the above figure, the green points indicate the extracted 
feature points; the colored straight lines represent the feature-
matching relationships between adjacent frames; the red points 
represent the initial dynamic points in the motion region; the 
blue points indicate the current initial static points. Obviously, 
our improved approach for feature matching does not show the 
phenomenon of lost tracking. Due to the combination of the 
improved FAST key point and optical flow matching methods, 
the robustness of tracking in weak texture environments can be 
maintained and the feature matching is accelerated. In 
conclusion, dynamic points within moving objects could be 
effectively detected in outdoor dynamic environments. 

B. Effect of Motion Area Rejection 

To demonstrate the effectiveness of the embedded object 
detection network, we conducts an experimental test of the 
semantic extraction module in real-world outdoor dynamic 
environment and fuses it with the initial dynamic points to 
judge the real motion region, and Fig. 5 specifically shows the 
effect of the real motion region judgment. The red dots in Fig. 
5 denote the dynamic points and the red bounding box denotes 
the extracted the priori dynamic areas. As we can see from Fig. 
5(d), a moving pedestrian is judged as a real motion area, and 
the dynamic feature points in this region are eliminated, while 
the feature points in the region of the standing person are 
effectively retained. Overall, our method achieves the accurate 
judgment for the real motion areas and effective rejection, 

which improve the accuracy of our system's pose. 
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              (a) Raw RGB image                           (b) Initial dynamic point              

 

            (c) Object bounding box                       (d) Retained static points             

Fig. 5. The effect of dynamic feature point rejection 

C. Evaluation of Pose Estimation 

In this section, the fr3/walking sequence from the TUM 
dynamic dataset is selected for testing, which is categorized 
into four different camera motion modes, where xyz means that 
the camera is moving along the xyz coordinate axis; static 
means that the camera is manually kept stationary; rpy denotes 
that the camera is moving drastically along the rotational axis; 
and half means that the camera is moving along the surface of 
the hemisphere. These sequences contain a large number of 
dynamic objects that are a challenge for the localization of the 
SLAM system. We demonstrate the estimated trajectories of 
ORB-SLAM3 and our algorithm in Fig. 6 and 7, respectively. 
The blue line in Fig. 6 and 7 indicates the trajectory estimated 
by the SLAM system, and the black line is the ground truth 
trajectory captured by the external motion capture device. The 
specific localization error results are illustrated in Table 2. 

 

                    fr3/walking/xyz                                    fr3/walking/static                  

 

                    fr3/walking/rpy                                       fr3/walking/half                  

Fig. 6. The result of estimated trajectories for ORB-SLAM3 

 

                    fr3/walking/xyz                                    fr3/walking/static                  

 

                   fr3/walking/rpy                                       fr3/walking/half                  

Fig. 7. The result of trajectories from our improved system 

As shown in the above figure, the red portion visualizes the 
error distribution of the algorithm trajectories. Obviously, the 
localization accuracy of our proposed algorithm in this paper 
under dynamic environment sequences is higher than that of 
ORB-SLAM3, while the estimated trajectory of ORB-SLAM3 
shows serious drift. The ATE (Absolute Trajectory Error, 
ATE) was used to quantitatively assess the error of the SLAM 
system and the performance was evaluated by RMSE. (Root 
Mean Square Error) and SD. (Standard Deviation). 

Table 2: The evaluation of ATE under dynamic scenario sequences 

Sequences 
ORB-SLAM3 Our algorithm 

RMSE. SD. RMSE. SD. 

fr3/walking/xyz 0.5457m 0.2852m 0.0162m 0.0080m 

fr3/walking/static 0.1719m 0.0695m 0.0067m 0.0029m 

fr3/walking/rpy 0.6826m 0.3621m 0.0333m 0.0191m 

fr3/walking/half 0.2489m 0.0781m 0.0268m 0.0133m 

From the data analysis in Table 2, it can be observed that 
our proposed algorithm effectively improves the localization 
accuracy of the system in dynamic environments, and our 
system‟s RMSE in indoor dynamic scenarios is less than 3 cm. 
Compared to ORB-SLAM3, the proposed system improves the 
positional accuracy by more than 85% on average. As a whole, 
our algorithm is able to handle the interference of high number 
of moving objects on the dynamic scenes, improve the 
robustness and localization accuracy of SLAM system, and 
thus provide accurate pose information for the dense mapping 
module to stitch together the local point cloud. 

D. Effect of Dense Mapping 

To validate the effectiveness of our proposed algorithm for 
dense mapping in complex dynamic environments, the TUM 
dataset is selected for experimental testing and analyzed and 
evaluated in aspects of the map accuracy and computational 
complexity of the dynamic environment's geometric structure. 
The sequences selected for the experiment are fr3/walking/xyz, 
which contain a large number of static and dynamic objects. 
The sparse and dense environmental maps constructed by our 
improved system are shown in Fig. 8 and 9, respectively. 

 

           (a) system implementation                        (b) sparse point cloud               

Fig. 8. Sparse maps constructed by the pre-improvement system 

In Fig. 8, the original SLAM system can only generate 

sparse point cloud maps, which cannot visualize the geometric 
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texture information of the environment. Such maps are not 
suitable for tasks like robot navigation and obstacle avoidance.  

 

              (a) drift point clouds                         (b) static dense point clouds           

Fig. 9. Dense maps constructed by our proposed system 

Through comparing the maps generated by the original and 
improved systems, it is apparent that our proposed system is 
capable of constructing dense 3D point cloud maps. Fig. 9 (a) 
shows the drifting point cloud around a moving pedestrian, and 
by dynamic region rejection, the accuracy of the pose 
estimation is improved and the drifting point cloud of moving 
people is effectively eliminated, as indicated in Fig. 9 (b). It‟s 
worth noting that our proposed system utilizes only the image 
information from the keyframes to construct the 3D point 
cloud, and the system constructs the map at about 15 FPS. 
Overall, our proposed system is able to efficiently generate 
dense maps of static environments to generate static point 
cloud maps for future advanced application tasks. 

CONCLUSION 

Aiming at the problem that the classical visual SLAM 
system cannot construct a dense map of the static environment 
in real-world dynamic environment, a dense map construction 
method combining geometric constraints and deep learning 
networks is proposed on the basis of the conventional visual 
SLAM system. Our improved system mainly eliminates the 
negative interference of dynamic feature points for position 
estimation by means of dynamic region culling. For the 
dynamic drift point cloud existing in the dense mapping 
process, the drift point cloud is removed by combining with the 
real motion region judged by the system, and finally, a globally 
consistent static dense point cloud map is obtained. Extensive 
experimental results on the TUM dataset show that our 
proposed method can accurately and efficiently construct static 
environment dense maps in dynamic environments, and greatly 

improves the localization accuracy of the visual SLAM system, 
especially in high dynamic environments the system performs 
better, which verifies the validity of our proposed algorithm, 
and proves the robustness of our system. 
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