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Abstract—As the battlefield environment becomes more and 

more complex, it is of great significance to study the game 

process of UAV to understand battlefield behavior. Therefore, 

the search for a UAV movement strategy has become the focus 

of research. In addition to the traditional strategy, deep 

reinforcement learning as a decision algorithm with self-

learning ability has attracted much attention. In this regard, for 

the target tracking task of our UAV to the enemy UAV, deep 

reinforcement learning is used to train the tracking strategy for 

our UAV. In order to find the most suitable deep reinforcement 

learning algorithm for UAV target tracking, a target tracking 

model was established, and the four algorithms were used for 

training, and the indexes of online training and the results of 

offline execution were compared. Finally, Dueling Double 

Deep q-learning and Proximal Policy Optimization achieved 

the best training effect and completed the target tracking task. 

Keywords: Deep Reinforcement Learning; Target tracking; 

Machine Learning;  

I.  INTRODUCTION  

In the battlefield environment, we can build our battlefield 
monitoring area through UAV to maintain the continuous 
tracking and monitoring of the enemy target [1], which can 
effectively prevent the enemy's fighting intention and protect 
the safety of our combat equipment. However, the actual 
combat environment is very complex, the enemy aircraft may 
escape from our monitoring area through maneuvering. In 
order to ensure the continuous tracking of our UAV to the 
enemy aircrafts, we use the deep reinforcement learning 
algorithm to train the tracking strategy of UAV. There are 
many algorithms in deep reinforcement learning, including 
Dueling Double Deep q-learning (D3QN) [2], Proximal Policy 
Optimization (PPO) [3], flexible executor-evaluator algorithm 
(SAC) [4], depth determination strategy gradient (DDPG) [5], 
etc. Different algorithms have different effects on UAV target 
tracking tasks. 

II. RESERCH CONTENTS 

A. Target tracking model analysis 

The single UAV target tracking task can be described as: 
OUR UAV seeks safe movement strategy for keeping the 
moving target within the detection range. The above problems 
can be modeled as Markov decision process and trained by 
deep reinforcement learning [6]. This section is divided into 
two parts: the establishment of Markov decision process model 
and the design of training method. 

The Markov decision process contains 5 tuple which is 

, , , , S A P R . Where, ,S A are state space and action space 

respectively, representing the state and action of the defending 
UAV. P  Is the transfer density function, which represents the 
probability that the body will transfer to the next state when 
performing an action in the current state. R  Is the reward 
function, and represents the reward that can be obtained when 
the UAV is in the current state. [0,1]   is the discount factor, 
indicating the degree of attention to long-term returns. The 
purpose of Markov decision process is to find the optimal 
strategy for decision-making. Strategy is defined as 

( | )a s  , indicating that the probability of executing action 
A according to strategy when the current UAV cluster is in 
state S. Since strategy is the final result and   is a 
hyperparameter. So the elements needed to be defined are 

, ,S A R  which are state, action and reward. 

B. Definition of state, action, and reward 

This chapter studies the target tracking of single agent in 
reinforcement learning, which will serve as the basis of multi-
agent target tracking in the following chapters, and find out the 
reinforcement learning method, appropriate reward function, 
and the definition of state and action that are more suitable for 
this task, so as to complete the training of agents. 

When reinforcement learning adopts DDPG, SAC, PPO 
and other continuous action space methods, A = (dx, dy), the 
dimension of action space is 2, its value is continuous, (dx, dy) 
represents the horizontal and vertical coordinates of the 
displacement of the agent within a moment. 

When DQN, D3QN and other discrete action space 
methods are adopted in reinforcement learning, action needs to 
be defined as discrete quantity. Therefore, the action is defined 
as 13 dimensions, that is 0 1 12( , , , )a a aA  , 13 actions 
numbered from 0 to 12 represent 13 kinds of displacement in 
four directions, Figure 1 shows that the continuous space is 
discretized. 
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Figure 1: UAV discrete action diagram 
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Assuming that the target is moving randomly in a two-
dimensional plane, the agent needs to keep track of the target 
without getting too close to the target and causing the risk of 
collision. According to the above situation, the agent's state, 
action and reward function can be defined, where, 

( , )Dx DyS , Dx and Dy are the relative horizontal and 
vertical coordinates of the tracking target and the agent 
respectively; R  is defined as the following formula: 
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Before training, the environment needs to be initialized. 
The initialization method will affect the training process to 
some extent. In the scenario here, the state is initialized 
as 0 (0,0)S  , that is, the relative position of the agent and the 
target is 0, within the danger radius. The reason for this is that 
an agent can experience as many states as possible during the 
learning process. 
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(a) Movement patterns α 
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(b) Movement patterns β 

Figure 2 Movement patterns of target 

During training, the movement of the target should also be 
designed to traverse various states as much as possible, so the 
movement of the target is defined as two modes, which are 
defined as α and β, as shown in the Figure 2: 

Where, α and β represent two motion modes of the target 
respectively, and P(α)=p, P(β)=1-p are the probabilities of the 
target in different motion modes at each moment. In the Figure 
2, the origin is the position of the target at the current time, and 

the circular field represents the possible position of the target 
after movement, and its probability follows the uniform 
distribution within the region. 

C. Network configuration 

In deep reinforcement learning, it is necessary to constantly 
use the model to output value functions or actions to realize the 
interaction between the current agent and the environment. 
This characteristic requires that the network of deep 
reinforcement learning must complete training in a short time 
to obtain new training data, so it can only use a smaller 
network. Among them, all the networks use MLP network, 
except the input layer and output layer, the network has two 
hidden layers, the width of the hidden layer is 512. At this 
point, you can start training the agent. 

The training environment was as follows: Pytorch deep 
learning library in Python was used. The hardware 
environment was a desktop host with Intel I9-10920X 
processor and 32GB memory. The graphics card is a Nvidia 
GeForce RTX 3090*2 with 24GB of memory. 

D. Online training index analysis and off-line test execution 

Each reinforcement learning method has different 
performance when dealing with different tasks. In this section, 
the above methods are applied to the defined agent, and the 
performance of each algorithm is compared according to the 
convergence index of reward function 

Figure 3 shows the reward curves for D3QN, PPO, SAC, 
and DDPG. In order to see the convergence trend of the reward 
curve, all curves are smoothed and shown as solid lines in 
various colors, while the highly transparent "burrs" are the raw 
data. It can be seen that PPO and D3QN can converge to the 
same level respectively, while SAC and DDPG cannot 
converge in this task. From the perspective of reward alone, the 
reward curve of PPO algorithm can approach the theoretical 
maximum value, and D3QN converges to half of the 
theoretical value. 

 

Figure 3: Reward curve of the DDPG, SAC, D3QN and 
PPO 

After the training, the strategy network and Q network 
obtained by PPO and D3QN were tested respectively. The 
testing environment was different from the training 
environment, that is, the strategy of linear movement and 
random sharp turn to get rid of the tracked target. The test 
results are shown in the Figure 4, in which red is the target 
movement track and blue is the UAV track respectively in 
D3QN. It shows that the UAV can follow the target on the 
premise of maintaining a safe distance after learning the D3QN 
algorithm. 
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Figure 4 The result of D3QN target tracking 

CONCLUSION 

A single UAV target tracking problem is studied to find a 
suitable deep reinforcement learning algorithm for UAV target 
tracking. After the establishment of the tracking model, D3QN, 
DDPG, SAC and PPO are firstly used to train the target 
tracking task of a single UAV. The reward curves of the four 
algorithms in the online training stage and the target tracking 
effect of the offline execution are counted. Finally, the reward 

curves of the training process and the task execution results are 
compared. DDPG and SAC algorithms failed to acquire 
strategies during training. The reward curve of PPO converges 
close to the theoretical maximum value, and the target tracking 
loss rate is close to 0% in the implementation stage. D3QN 
failed to converge to the maximum value, but target tracking 
could be completed at a low target loss rate in the execution 
stage. The effectiveness of PPO and D3QN algorithm is 
verified. 
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