
International Journal of Trend in Research and Development, Volume 8(4), ISSN: 2394-9333

www.ijtrd.com

IJTRD | July – August 2021
Available Online@www.ijtrd.com 10

A Secure Instant Messager

Bing Lv

College of Computer Science and Technology, Shan Dong University of Technology, Zibo, Shandong, China

Abstract: This system is based on E2EE (End-to-End

Encryption) technology and implements a secure instant

messager. Including instant messager, file sharing and video

call functions. E2EE means that in a communication system,

only the end user can decrypt messages, preventing Internet

service providers, including but not limited to, even the

communication system providers from obtaining the key used

to decrypt the content of the communication. At present, even

if the typical communication system does not include end-to-

end encryption, this type of system can only ensure that the

communication between the client and the server is protected,

and the service provider itself can see and store all the user's

communication content. End-to-End encryption is considered

more secure because it attempts to fundamentally avoid this

problem.

Keywords: E2EE; Instant Messager; Key; Secure

I. INTRODUCTION

This system hopes to have a deep understanding of the

technology of an instant messaging system based on end-to-

end encryption, explore better authentication mechanisms,

promote the increase of the amount of data on the Internet that

cannot be decrypted by service operators, support and promote

the progress of end-to-end encryption technology and

Standardization work.

This system is divided into three main parts. API server,

message server and client. The API server is used to process

the business requirements of the system. The message server

responsible for user session management and message

forwarding is designed with high performance and can be

deployed in multiple data centers to cope with the connection

scenarios of a large number of users.

II. SYSTEM GOAL

1. Instant messaging

This system needs to complete the common functions of the

instant messaging system, including instant messaging, file

sharing, and video call functions.

2. Performance and flexibility

This system provides a high-performance messaging server

that can be distributed to multiple data centers to carry a large

number of users.

3. Identity verification

This system is designed to provide only verified

communications. During the conversation, both parties can

determine the identity of the other party. To avoid man-in-the-

middle attacks.

4. End-to-End encryption

This system establishes an end-to-end encryption link. The

shared key is deterministically derived using a variant of the

Diffie-Hellman key exchange algorithm, and the session key is

never directly transmitted on the network. This will prevent

any third party (including the service provider itself) from

viewing or tampering with the user's communication content,

because it is difficult for a third party without a key to decrypt

the data transmitted or stored in the system.

5. Privacy

When this system establishes a link, it will avoid leaking

the keys of any parties involved to a third party.

6. Cross-platform and audit

This system provides cross-platform end-user components

and allows users to audit the security of the system.

Anonymous communication is not within the scope of this

system.

III. FEASIBILITY ANALYSIS

1. Symmetric key encryption

The client already has some kind of symmetric key that can be

used to encrypt data before sending it and decrypt it when it is

received. This system uses AEAD (Authenticated Encryption

with Associated Data) symmetric encryption. The AEAD

algorithm has the authentication and encryption of the

associated data, which is an encryption mode that can

guarantee the confidentiality, integrity and authenticity of the

data at the same time. This algorithm has been used by

industrial-grade encrypted transmission protocols such as TLS

and SSH, and has been widely supported. Compared with

algorithms such as AES-GCM, it requires lower equipment

performance and higher speed.

2. Key Exchange

This system uses the ECDH (Elliptic Curves Diffie-Hellman)

algorithm, which is a variant of Diffie-Hellman key exchange,

and uses elliptic curve cryptography to enhance performance

and security. Compared with RSA, this algorithm is more

efficient, has a shorter key, and is less susceptible to side-

channel attacks (including cache timing attacks, hyper-

threading attacks, etc.), and is widely supported by the industry.

3. Identity verification/identity key management

This is the core part of the entire system. This system uses PKI

(Public Key Infrastructure) and submits the identity

verification to CA (Certificate Authority) to complete. The PKI

system is currently a widely used and highly secure identity

authentication method.

IV. SYSTEM DESIGN

The system as a whole is divided into three parts: API server,

message server, and client App.

The API server is used to process user requests and

implement business logic. Use MongoDB replica set to store

data. Use Nginx reverse proxy for load balancing.

The message server is responsible for user session

management and message forwarding. The message server is a

high-performance WebSocke server developed using C++ and

Oat++ frameworks, and is allowed to be deployed to multiple

data centers to cope with the connection scenarios of a large

number of users.

International Journal of Trend in Research and Development, Volume 8(4), ISSN: 2394-9333

www.ijtrd.com

IJTRD | July – August 2021
Available Online@www.ijtrd.com 11

The client, as the software provided to the end user, calls

the API provided by the API service to complete various

services, and uses two sets of WebSocket connections (in this

system they are called Replica and Contact) to send and

receive instant messages with the message server. Provide

users with end-to-end encrypted instant messaging and file

sharing, as well as video call functions.

In addition, a streaming media server needs to be deployed

in the data center where the message server is located to meet

the needs of video calls. It is also necessary to deploy a set of

object storage services based on the S3 (S3 Simple Storage

Service) protocol to meet users' image and file sharing needs.

1. Message Server

The message server consists of the following 3 parts:

Controller layer,used to provide WebSocket connection

establishment and implementation of REST API.

Session service,used to implement session management,

keep-alive, online and offline, and identity verification.

Message forwarding, including forwarding instant messages,

returning messages, offline notifications, and time call

signaling.

Statistics and log service,used to record statistical

information and system logs for administrators to check and

monitor the running status of the system in real time

2. Client App

The core part of the client is the key exchange engine, which is

divided into two parts, crypto_lowlevel and HLC. The former

implements basic cryptographic operation primitives, and the

latter implements an abstraction layer that encapsulates the

process of message encryption and decryption by key exchange.

Crypto_lowlevel contains the abstraction of the

Curve25519 key, the realization of the X25519 key exchange

and the encapsulation of Chacha20Poly1305. Each session will

have its own HLC. HLC internally completes key exchange,

encryption and decryption, packaging of messages and

metadata, etc., and provides abstraction for other parts.

3. Asynchronous IO Framework

The client encapsulates an asynchronous task framework. This

is because the compatibility of PyGObject and Python's native

asynchronous framework asyncio is poor, so the asynchronous

IO framework is implemented by itself. The bottom layer is

based on the GLib message loop to provide support for other

parts of the client. .

4.Session Management

Manage two WebSocket connections between replica and

contact and the message server. The former receives messages

sent by the other party, and the latter is used to send messages,

receive online and offline notifications, receive rejection

notifications, and so on.

5.Video call session management:

The internal is a state machine, which manages the status of the

idle, initiating, receiving notification, and official start of the

video call.

6.Push Stream Management

Responsible for managing the encoding, decoding,

pushing and receiving of streaming media

7.Data persistence

First, it is responsible for storing user configuration

information locally, such as tokens, private keys, etc. The

second is responsible for backing up the message to the

database through the ORM layer for later viewing, as well as

storing the public key of the contact and the blocking list, etc.

CONCLUSION

In response to the increasing demand for the security and

privacy of instant messaging systems in recent years, this

system proposes an implementation of an end-to-end encrypted

instant messaging tool. End-to-end encryption means that in a

communication system, only the end user can decrypt

messages, preventing Internet service providers, including but

not limited to, even the communication system providers from

obtaining the key used to decrypt the content of the

communication. This system uses X25519 key exchange, the

first use of trust (TOFU) such as `authentication, and

symmetric encryption with Poly1305 Chacha20 verify

implementation of end to end encryption.

References

[1] Yoav Nir, Adam Langley, RFC8439, ISSN: 2070-1721.

ChaCha20 and Poly1305 for IETF Protocols, Internet

Research Task Force (IRTF), 2018.

[2] David A. McGrew, Kevin M. Igoe, Margaret Salter,

RFC6090, ISSN: 2070-1721, Fundamental Elliptic Curve

Cryptography Algorithms, Internet Engineering Task

Force (IETF), 2011.

[3] Abu-Salma R, Redmiles E M, Ur B, et al. Exploring user

mental models of end-to-end encrypted communication

tools. 8th USENIX Workshop on Free and Open

Communications on the Internet (FOCI 18). 2018.

[4] Lee J, Choi R, Kim S, et al. Security analysis of end-to-

end encryption in Telegram. Simposio en Criptografía

Seguridad Inform á tica, Naha, Jap ó n. Disponible en

https://bit. ly/36aX3TK. 2017.

