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Abstract: Light Detection and Ranging (LiDAR) scanning 

systems integrate laser scanners, Global Positioning Systems, 

and inertial navigation technologies into one system that can 

acquire positional data and intensity information about 

surrounding objects. In Mobile Laser Scanning, data collection 

equipment is mounted on a truck that travels through a 

highway creating a 3D point cloud image of the entire road 

segment. The high point density of such datasets enables 

automated extraction of multiple roadway features, which are 

typically collected manually during long site visits. In addition, 

LiDAR datasets could also be used to assess geometric 

elements of highways such as available stopping sight 

distance. If used to their full potential, LiDAR datasets could 

create a paradigm shift in how geometric assessments and 

safety audits on highways are conducted. To highlight the full 

potential of LiDAR data in transportation engineering and to 

address doubts about the feasibility of extracting information 

from LiDAR, this research effort provides a thorough review 

existing and future applications in this area. Unlike previous 

research, this effort includes a thorough review of the previous 

attempts of data extraction from LiDAR while highlighting 

limitations in existing algorithms and areas where more 

research is required.  

Keywords: Transportation Engineering; Highway Design; 
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I. INTRODUCTION 

Light Detection and Ranging (LiDAR) is a remote sensing 

technology that uses light rays to collect information about 

objects without making physical contact with those objects. 

LiDAR data could be airborne (data collected using airplanes), 

spaceborne (collected using satellites) or terrestrial (collected 

form the ground). More so, ground based LiDAR data can 

either be static or mobile. In Mobile Laser Scanning (MLS) 

scanning equipment is mounted on vehicles, which travel 

along the highway of interest capturing 360
0
 imagery of the 

roadway. MLS is the most common approach to collect data 

for transportation applications since road features can be 

captured with a high level of detail. 

In addition to the laser sensors, data collection vehicles are 

mounted with Global Navigation Satellite System (GNSS) 

receivers and inertial measurement unit (IMU) which provide 

information about the exact position of the sensor. LiDAR data 

is collected using scanning equipment reflecting light beams 

off objects. The light pulse emitted from the sensor bounces off 

the target object and is reflected backto the sensor; given the 

properties of the reflected beam, the distance between the 

scanner and the scanned object can be computed. Position 

information of the scanned object can then be determined 

based on the distance between the scanner and the object and 

the positional information of the scanner obtained from the 

GNSS equipment. During the scanning process, thousands of 

beams per second are transmitted from the laser scanner, this 

results in millions or, in some cases, billions of distance 

measurements to surrounding surfaces. Constant scanning of 

objects around the sensor creates a 3D point cloud of known 

positional attributes as seen in Fig 1.  Unlike traditional 

surveying of roadways, using LiDAR data produces highly 

accurate images of roads while travelling at highway speed, 

which causes minimal disruption to road traffic. 

Realizing the potential of having LiDAR data and its value to 

highway data collection efforts, many transportation agencies 

across North America, including Departments of Transport 

(DOT) at Oregon, Washington and North Carolina, started 

collecting this type of data. In Canada, Alberta Transportation 

(AT) started collecting LiDAR point cloud data at multiple 

highways across the province of Alberta in 2012. Despite 

many agencies collecting LiDAR data, the efforts to explore 

the potential usage of the data have been somewhat limited. 

This could be a matter of researchers not realizing the full 

potential of such data or not having the expertise required to 

extract more information from those datasets. This has led 

most DOTs which have collected LiDAR data to limit its usage 

to asset management applications such as traffic sign 

inventory. According to a former director of asset management 

at Utah’s DOT, the key to maximize the benefits from LiDAR 

data is sharing data among different divisions at an agency [1].  

 

Fig 1:  LiDAR point cloud highway 

To highlight the full potential of LiDAR data in transportation 

and in an attempt to address doubts about the feasibility of 

extracting information from LiDAR images, this paper 

provides a thorough review of the potential applications of 

LiDAR in the field of transportation. The review provides 

information about the applications and algorithms that have 

been developed in previous research to extract valuable 

information from LiDAR data. Finally, the paper discusses 

potential gaps and areas where more research might be 

required to use LiDAR data to its full potential. 

II. LIDAR IN TRANSPORTATION INFRASTRUCTURE 

MANAGEMENT 

Departments of Transports (DOTs) have been collecting 

LiDAR data due to its value in traffic sign inventory and other 

asset management applications, however, research shows that 

LiDAR applications in transportation extend beyond asset 

management. In fact, a report by the National Highway 

Cooperate Research Program (NCHRP) in the United States 

highlighted several different applications of LiDAR in 
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transportation illustrated in Fig. 2[2]. The research found that 

current and emerging applications for MLS in transportation 

cover a wide range of topics. This paper reviews previous 

research that explored using LiDAR data in extracting on-road 

information, roadside information and in conducting 

assessment of highways.  

 

Fig 2: Applications of MLS in Transportation[2] 

III. REVIEW 

3.1 Lane Marking and Road Edge Extraction. 

Extracting lane markings and road edges from LiDAR data has 

been heavily explored in previous research. The high 

reflectivity of lane markings makes extracting such 

information from LiDAR images feasible. The algorithms and 

tools used in the extraction vary among the different studies, as 

does the accuracy achieved.  

Zhou and Deng [3] used airborne LiDAR in the detection of 

curbstones. The authors propose a three-step algorithm to 

extract curb information. The first step involves identifying 

points where there is an abrupt change in height. Once that is 

done, the maximum height difference (MHD) within the 

neighborhood is computed between midpoints of high and low 

points on either ends of the height jump. These points are 

arranged into a sequence to obtain a polygonal chain 

describing the approximate curbstone location and all points 

near the chain are then fitted to a sigmoidal function to 

increase the accuracy. The final step involves closing gaps 

between nearby and collinear line segments. To assess the 

performance of the proposed algorithm, the authors compared 

their results obtained from Aerial Laser Scanning (ALS) to 

information obtained using GPS and MLS. The results 

revealed that completeness varied between 53% and 92% from 

ALS which was higher than that of mobile laser scanning 

(MLS) (54% to 83%). The failure to achieve 100% rates was 

attributed partially to parked cars that blocked the curbstones. 

Further, the authors report that when comparing the Root Mean 

Square (RMS) value between GPS points and points obtained 

through laser scanning values of 0.11 m and 0.06 m were 

obtained for ALS and MLS data, respectively. 

Zhang [4] attempted real time extraction of a roads surface and 

road edges from LiDAR data during the data collection stage. 

LiDAR range data is decomposed into elevation signals and 

signals projected on the ground plane. The algorithm performs 

elevation based filtering to identify a road candidate region and 

pattern recognition techniques are used to determine whether 

the candidate region is a road segment. After that, line 

representation of the projected signals on the ground plane is 

identified and compared to a simple road model in the top-

down view to determine whether the candidate region is a road 

segment with its road edges. According to the authors, the 

proposed algorithm was validated under various urban 

scenarios and was successful. The authors state that the 

algorithm detects most road points, road-curb points, and road-

edge points correctly with a false alarm rate and a miss rate of 

0.83% and 0.55% respectively.  

Jaakkola, et al. [5] attempted detecting road markings and 

curbstone information from LiDAR data with the aid of image 

processing techniques. The authors attempted classifying the 

data into road markings and curbstone points while modelling 

the roads surface as a triangulated irregular network (TIN). 

The classification involved segmentation of road markings and 

curbstones by using thresholding and through the application 

of morphological operations to elevation and intensity images. 

Success rates in the region of 80% were reported in the study 

for the classification of curbstones, zebra crossings, and 

parking space lines. 

In a paper by Kumar, et al. [6] the extraction of road edges was 

attempted using image segmentation techniques. The authors 

used a combination of Gradient Vector Flow (GVF) and 

Balloon Parametric Active Contour models to perform the 

extraction. The algorithm involves converting the LiDAR 

images into 2D raster surfaces based on elevation, reflectance, 

and pulse width attributes. Edge boundaries of the raster 

surfaces are then formed by using hierarchical thresholding 

(limits noise) and canny edge detection (determines 

boundaries). A snake curve is then used to construct road 

segments that would intersect with LiDAR road data points. 

The developed technique was tested on three 50m road 

sections, one with a grass-soil boundary, one with curbstones 

and one with a shoulder prior to the grass-soil boundary. The 

road sections were segmented into multiple sub-sections and 

the edge extraction was accurate in all but two instances. 

Inaccuracy was attributed to a low point density on one edge of 

the road compared to the other.  

In another study Kumar, et al. [7] extended their work on road 

edge extraction to extract lane marking information from 

mobile LiDAR data. In this study the authors perform range 

dependent thresholding to the LiDAR intensity values and use 

binary morphological operations to obtain lane marking 

information. As in the case of the road edge extraction, the 

authors start by converting the data into 2D range and intensity 

raster surfaces before applying the thresholding and the 

morphological operations. For incomplete road markings (i.e. 

locations where markings had rubbed off), linear dilation was 

used to fill in the gaps. Moreover, assuming prior knowledge 

of road marking dimension, an erosion process is carried out to 

remove any outlying points and any artificial noise added by 

dilation. Markings were extracted over seven road sections 

covering 150m. Of 93 road markings, 80 markings were 

correctly detected. The undetected markings were attributed to 

low point density and low intensity.  

Guan, et al. [8], also develop an algorithm to extract lane 

markings using range dependent thresholding and the 

application of morphological operations. The authors first 

propose a curb based procedure to extract the roads surface. 

This is done by slicing the LiDAR data into blocks 

perpendicular to the roads trajectory. Within each block, 

differences in elevation are used to classify points into layers 
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and to identify road edges (curbs) which represent the 

boundaries of the road surface. Once the road surface is 

extracted, the geo-referenced intensity images of the LiDAR 

points are generated using Inverse-Distance-Weighted 

interpolation (IDW). The IDW rasterizes the road surface 

based on the reflectivity of points and their proximity to the 

central point on the road. The final step of the extraction 

procedure involves using density-dependent multi-threshold 

segmentation to filter out lane markings and the application of 

closing morphological operations to remove noise and fill in 

gaps within extracted lane markings. The algorithm was 

applied on two datasets covering 168m of roadway length. 

Three sub-segments of those two roadways were used to assess 

the accuracy of the algorithms. This was done by manually 

comparing the results of the sub-segments to the ground truth. 

The authors measured how complete the extracted road 

markings were (completeness) and the percentage of the 

extracted road markings are valid (correctness) achieving 

success rates of 0.96 and 0.83 for completeness and 

correctness, respectively.   

In Thuy and León [9], the lane detection process starts by 

plotting the probability density function (pdf) for the 

reflectivity observations of all data points. Since most the 

points fell on the road’s surface, the maximum observation in 

pdf is assumed to correspond to the reflectivity of the roadway. 

Once that is identified, a dynamic threshold is calculated based 

on the maximum of the reflectivity pdf to distinguish and 

improve the contrast between the road surface points and lane 

markings. A threshold value is then chosen based on the 

standard deviation. Values estimated for the road surface are 

subtracted from the histogram within a one-sigma interval. The 

mean value is recalculated and used as the threshold for image 

binarization. A Canny filter (edge detection algorithm) is 

applied to the binary image for better lane detection. Although 

the developed algorithm was tested, not much discussion is 

provided on the results of the lane detection results. It is worth 

noting that paper also proposed a method for lane tracking 

using Kalman filters, however, this is out of the scope of this 

review.  

Yan, et al. [10] proposed a scan line based method to extract 

road markings from mobile LiDAR point clouds. After 

processing the data and removing outlying observations, the 

proposed algorithm involves ordering LiDAR points 

sequentially by timestamp. Points are then organised into scan 

lines based on scanner angle. According to the authors, such an 

arrangement increases the efficiency of data processing. Seed 

road points are extracted based on the Height Difference (HD) 

between trajectory data and the road surface. Seed points are 

then used to extract the full road points. This is done by fitting 

a line through the seed point and all other points along the scan 

line using moving least squares and only retaining points 

which fall within a certain threshold of the line. Road points 

are then classified based on intensity into asphalt points and 

road marking points. Intensity values are then smoothed by a 

dynamic window median filter to reduce noise and road 

markings are extracted using the Edge Detection and Edge 

Constraints (EDEC) method, which measures abrupt changes 

in intensity along a scan line. Data from Jincheng highway in 

Beijing (China) was used to test the proposed algorithm. The 

authors applied their procedure on 3 segments ranging in 

length from 70 to 100m. Average completeness and correctness 

rates of 0.96 and 0.93, respectively were achieved.  

3.2  Traffic Signs 

Traffic sign extraction has been the most common application 

for LiDAR data. Extraction of traffic sign inventory from 

LiDAR images has been attempted in many studies using both 

airborne and mobile laser data. Extraction results and 

procedures vary among different studies, however, in general, 

high success rates have been achieved.  

In one of the earliest studies to attempt automatic road sign 

extraction from LiDAR data, Chen, et al. [11] used mobile 

LiDAR point cloud data to obtain traffic sign inventory along a 

600m road segment in Chicago. The technique used in the 

study involved filtering the data based on a user defined 

distance from the sensor, a certain sensor angle interval and 

intensity. Data clustering was then performed through which 

points were placed into a grid, and a threshold was defined to 

keep grids that a higher point density only before geometric 

filtering was applied. Although the study claims to have 

produced satisfactory results, no information is provided about 

the percentage of signs accurately extracted.  

In a more recent study, Vu, et al. [12], attempted real time 

identification and classification of traffic sign (i.e. detection 

and classification occurs while the probe vehicle travels along 

the road collecting LiDAR data). The authors used onboard 

sensors including a sensor platform equipped with GPS/IMU, 

3D LIDAR, and a vision sensor. Data points were first filtered 

by intensity using a virtual scan image and the range is 

checked between each high intensity plane and only planes of 

a spacing of more than 1m are retained. Principle Component 

Analysis (PCA) was then used to determine alignment of 

planes, and only planes aligned along the road are retained. 

The main limitation of this study was that the extraction 

procedure was only applied on a test track; hence, its 

performance in a dynamic environment is unknown. Real time 

traffic sign detection was also attempted [3]. LIDAR point 

cloud data was converted to camera coordinates and the 

regions of interest were then identified and classified using 

colour characteristics of the images. Success rates ranging 

from 84 to 96% were reported depending on whether the sign 

was in the range of the data collection vehicle.  

Weng, et al. [13] used mobile LIDAR data collected on 

Huandao road in Xiamen, China to detect and classify traffic 

signs. Approximately 6.7 million points were collected and a 

C++ algorithm was used to detect signs. The detection phase 

involved filtering by intensity, hit count, elevation, and height 

filtering. A minimum of 70 points is chosen as a threshold for 

hit count, a minimum elevation of 2m, and a minimum sign 

height of 0.4m. The success rate of detection is not discussed, 

but it is mentioned that some false positives such as billboard 

signs are detected. 

Ai and Tsai [14], filtered their data based on intensity, hit 

count, and MUTCD elevation and offset values. To find the 

optimal threshold value for each parameter, an initial value is 

chosen for each parameter, then a sensitivity sweeping 

procedure is used to optimize the thresholds for each parameter 

minimizing false-negatives and false-positives. Trimble T3D 

analyst software is used for automatic sign detection. The 

algorithm was tested on road segments in Indiana with a 94% 

detection rate achieved with 6 false-positives for I-95 highway 

and a 91.4% of success rate with 7 false-positives achieved on 

37
th

 street. There were also four cases of false-negatives which 

were attributed to either poor retro-reflectivity, insufficient 

height, or being obstructed by other objects. 

Landa and Prochazka [15] also filtered the data by intensity, 

however, Euclidean distance was used for clustering. The 

clusters were then filtered based on density, elevation and 
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height. A 93% success rate was reported in the study with the 

authors attributing missed signs to low point density.  

Wu, et al. [16] used PCA and intensity filters to detect vertical 

planes where traffic signs exist in LiDAR point cloud data. 

On-image sign area detection is then implemented by 

projecting the 3D points of each traffic sign onto a 2D image 

region that represents the traffic sign. Success rates are not 

discussed in the study.  

Soilán, et al. [17]removed points more than 20m from scanner. 

The ground surface was then converted to a raster grid and a 

raster coordinate system is created. Ground points were 

removed from the data and intensity filtering was applied to 

remaining points. A Gaussian mixture model was used to 

further remove low intensity points. Density based cluster 

algorithm was used for clustering and PCA was used to 

distinguish signs from posts. The method was applied to an 

urban road and a highway segment in Spain achieving success 

rates of 86.1% and 92.8% for the urban road and highway, 

respectively. The study attributed false positives to planar 

metallic surfaces and pedestrians dressed in reflective clothing. 

Riveiro, et al. [18] followed a similar procedure to Soilán, et 

al. [17] by filtering points by intensity and using Gaussian 

mixture models to further filter the data points. A similar 

procedure was also used for the clustering and PCA was used 

to remove false positive clusters (clusters with curvature). The 

methodology was tested in Brazil, Spain and Portugal with 

success rates ranging from 80% to 90% depending on the road 

type and the type of sign extracted.  

Ai and Tsai [2] used computer vision techniques to detect 

traffic signs. The primary aim of the study was not to detect 

traffic signs, instead the authors attempted automatic 

assessment of traffic sign reflectivity conditions. The authors 

proposed a four-stage procedure by which traffic signs are first 

extracted and color segmented from video log images. The 

next step involves linking the LiDAR point cloud points to 

image pixels to make use of the intensity information of those 

points. Since intensity is affected by many factors including 

incidence angle and range (i.e. the distance from the scanner to 

the object), the next stage involves normalization of the 

intensity values. The authors develop empirical equations to 

correct for confounding factors. The final stage involves 

relating the intensity values to the reflectivity standards, which 

is done through experimental lab tests. Field tests of the 

developed algorithm showed that the retroreflectivity from the 

handheld retroreflectometer are highly consistent with the 

values obtained from the LiDAR data. The inconsistencies 

found were attributed to the handheld retro-reflectometer 

accuracy. As for the traffic sign detection, the authors state that 

their technique was able to detect 85% of traffic sign data.  

3.3 Roadside Objects 

Road side objects including lamp posts, trees and utility poles 

can have huge effects on the severity of runoff the road 

crashes. Roadside objects such as culverts, trees, utility and 

light poles, are associated with the highest percent of severe 

accidents [19]. Thus, their existence and proximity to the road 

must be identified for effective roadside management. The 

feasibility of extracting such objects from LiDAR data has 

been explored in previous research.  

 

Fig 3: Roadside poles and trees 

Recent work byZheng, et al. [20] proposed a technique to 

automatically extract street lighting poles from mobile LiDAR 

data. The proposed method involved segmentation and 

recognition approach. The authors first used a piecewise 

elevation histogram segmentation method to remove ground 

points. Then, a new graph-cut-based segmentation method was 

introduced to extract the street lighting poles from each cluster 

obtained through a Euclidean distance clustering algorithm. In 

addition to the spatial information, the street lighting pole’s 

shape and the point’s intensity information were also 

considered to formulate the energy function. Finally, a 

Gaussian-mixture-model-based method was introduced to 

recognize the street lighting poles from the candidate clusters. 

The proposed approach was tested on several point clouds 

collected by different mobile LiDAR systems. Experimental 

results showed that the proposed method achieved an overall 

performance of 90% in terms of true positive rate. 

Lehtomäki, et al. [21] develop a MATLAB algorithm which 

can be used to extract and classify road side objects such as 

poles and trees from LiDAR data. First roadside objects are 

segmented into homogenous clusters based on proximity. After 

that principle component analysis is used to define two 

primary axes for each of the clustered objects. The ratio of the 

two primary axes was computed to classify the clustered 

object. If the ratio is large, the object is classified as a potential 

pole. For further classification, a mask is used to determine if 

the data is accepted as a pole or, instead, classified as a tree 

trunk. The mask is made of two cylinders with the same axis, 

with the smaller one located inside the other. The cluster is 

then fitted to the smaller cylinder, and the number of data 

points in each cylinder is compared. If the number of points in 

both cylinders is equivalent, this increases the likelihood of the 

cluster taking a pole-like shape. This mask is moved from the 

bottom to the top of the cluster to minimise the impacts of 

obstructions such as branches or posted signs on the 

verification process. Testing showed that 69-78% of roadside 

objects were detected successfully using the proposed 

algorithm. The authors also found that objects within 12.5m of 

the scanner resulted in higher detection rate and accuracy. For 

objects that were not detected, the authors attributed this to an 

insufficient number of data points or objects being obstructed 

from the view of the scanner.  

Extracting road side objects from LiDAR was also studied in a 

paper by Pu, et al. [22]. The objective of this paper was to 

automatically classify a LiDAR dataset into different objects. 

The algorithm used a hierarchical classification method of the 

LiDAR dataset where the data points are first classified into 

three large categories: ground surface, objects on-ground, and 



Special Issue Published in International Journal of Trend in Research and Development (IJTRD), 

ISSN: 2394-9333, www.ijtrd.com 

 International Conference on Trends & Innovations in Management, Engineering, Sciences and Humanities, Dubai, 20-23 December 2018 Page 147 

 

objects off-ground. Prior knowledge of the size, shape, 

orientation along with topological relationships is used to 

further classify on-ground objects into categories such as 

traffic signs, trees, building walls and barriers. Testing showed 

that the algorithms were successful in detecting certain objects 

such as poles with an 86% accuracy. Other features such as 

traffic signs (61%) and trees (64%) had lower success rates.   

In work by Lin and Hyyppa [23] the authors attempted 

extracting information about pedestrian culverts from mobile 

LiDAR data. The study developed an algorithm to perform the 

detection, however, it was found that the complete coverage 

(exact dimensions) of pedestrian culverts cannot be obtained 

from mobile scans. Therefore, it is recommended that scanning 

is performed in a “stop-go” fashion in order increase the 

density of the scans.  Although pedestrian culverts could not be 

detected accurately, the study highlights the feasibility of 

detecting storm drainage culverts since water is detected easily 

by LiDAR. 

3.4 Road Cross Section Information 

Cross sectional slopes are important in ensuring speedy water 

drainage off roads to minimize the risks of hazards such as 

aquaplaning. Similarly, superelevation (tilting) on horizontal 

curves ensures that the effects of centrifugal forces are 

minimized, which minimizes the risk of overturning or lateral 

skidding. Moreover, slopes also play an important role in 

designing a highways lateral clearance. Despite that, a limited 

amount of studies attempted extracting such features from 

LiDAR data.  

Tsai, et al. [24] developed an algorithm that can be used to 

extract cross slopes of roads from mobile LiDAR data. The 

laser scanner is oriented to a specific beam angle and beam 

distance. Cross section information is then extracted for region 

of intersect perpendicular to the roads trajectory. The length of 

the region of interest is user defined and bounded by lane 

markings on the edges. The authors recommend that lane 

markings are extracted from the LiDAR dataset but based on 

an algorithm proposed in a different study. Once the desired 

ROI is extracted, its cross slopes are estimated using linear 

regression. To identify the appropriate depth for the ROI, the 

authors run a sensitivity analysis. The analysis revealed that 

length of ROI should be 2ft to achieve adequate cross slope 

measurements. In addition to the sensitivity analysis, the 

authors tested the proposed algorithm in a controlled 

environment to assess its accuracy and repeatability. The 

authors found that the proposed algorithm yielded results 

within 0.28% of the digital level measurements. 

In another recent paper which considered extracting road cross 

sectional inventory, Holgado‐ Barco, et al. [25] propose an 

algorithm which can be used to determine slopes, lane widths 

and number of lanes on a segment from mobile LiDAR 

images. The algorithm involves road segmentation where the 

road surfaces is extracted using an adaptive height threshold 

and scanner angle. After extracting the road surface, the 

procedure involves intensitybased filtering of the data to obtain 

lane markings. A geometric filter is applied to lane markings to 

remove false positives. Once this is done, Principal 

Component Analysis is used to connect discontinuous lines. 

Distances between lines are then used to identify lane width, 

shoulder widths and slope differences. The proposed technique 

was tested on two motorways (400m and 1km) in Spain. 

Comparing multiple extractions on each motorway, the authors 

found that only slight variations in the extracted information 

existed. Variations in shoulder width along the same segment 

was attributed to the existence of vehicles that obstructed the 

view of the scanner.  

3.5 Vertical Alignment Information 

One application for LiDAR in transportation is to facilitate the 

production of as-built drawings without the need for extended 

site visits. Accordingly, a number studies have attempted the 

extraction of geometric details of road segments, road grades, 

road slopes and vertical and horizontal profiles from LiDAR 

data.  

One of the most relevant studies which worked on the 

collection of vertical alignment information from LiDAR data 

was the project led by Iowa’s DOT [26]. To estimate highway 

grade, the authors used least squares regression analysis to 

estimate the elevation of points along the centerline of a 

highway. The boundaries of the 100ft road segments (road 

edges) were first manually defined in ArcGIS by drawing 

polygons around the location of interest. The midpoints of the 

edges were used as the centerlines of the road segments and 

multiple linear regression was used to estimate the elevation of 

points along the proposed centerline. The predictors of the 

regression model were: (i) the lateral distance of a LiDAR 

point from the centerline and (ii) the longitudinal distance 

along the segment from its origin. The regression coefficients 

of the two independent variables (lateral distance to the 

centerline and longitudinal distance to the centerline) 

represented the cross slope and the grade of the segment, 

respectively. The study found that the estimated grade and 

slope attributes both deviated significantly from field survey 

measurements, particularly for cross slopes. This led the 

authors to conclude that collecting LiDAR data for those 

purposes alone was not cost effective. 

In other work estimating highway grade, Zhang and Frey [27], 

used a similar technique to that in [26] except that in this study 

the authors used road width information to define road edges 

and a map of the road to estimate the location of the centerline. 

The paper also used regression analysis to estimate the grade 

of the road with the authors reporting a level of accuracy of up 

to 5%. One major limitation of this study and the one by 

Souleyrette, et al. [26] is that the segments for which grade 

estimation is attempted need to be straight segments (i.e. 

estimation was not possible for segments with great deviations 

in the horizontal alignment of the road). This led authors to 

select segments which were short enough so that the curvature 

was not significant. The segments, however, had to be long to 

have enough points for the regression analysis and meet the 

normality assumption. Hence, the authors were faced with a 

segmentation issues. 

In more recent work, Dawkins [28] used LiDAR data to 

validate road profile extracted using a vehicle suspension 

model, although the author does not provide much details on 

how the profile was estimated using LiDAR data. It is likely 

that the paper traced the path of the data collection vehicle and 

used the elevations of the point cloud points along that line to 

produce the profile. However, this is not explicitly discussed in 

the paper. 

Wu, et al. [29] used LiDAR data to compute the elevation of 

the road surface. In the process, 3D cloud point data were 

projected onto vertical planes defined by the trajectory of the 

vehicle collecting the LiDAR data. The points along the profile 

were segmented using the Douglas-Peucker algorithm, which 

connects points within the vertical planes to produce a line 

segment representing one portion of roads profile. Since the 

aim of the analysis was not to extract the vertical profile of the 
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road segment, the authors do not provide any discussion of the 

level of accuracy achieved.  

Unlike other studies, Han, et al. [30] used a photogrammetric 

approach to analyze road profile. The authors used a laser 

module to measure the distance between the sensors on board 

the data collection vehicle and the road surface. This 

information was linked to the image coordinates. To identify 

the profile at a certain location, image coordinates 

corresponding to the real space coordinates of that location 

were identified along with the elevation information. 

Kim, et al. [31] explored the measurement of several geometric 

features from LiDAR data. The paper does not provide details 

of the extraction procedure; however, it is claimed that the 

extraction of horizontal and vertical alignments as well as 

cross sectional slopes was achievable.  According to the 

authors, horizontal alignment extraction involves splitting the 

data into straight and curved segments using the Douglas and 

Peucker simplification algorithm while cross sectional 

information was estimated using the least squares method. Test 

data was collected on 1km long highway in China. When 

comparing between finally extracted elements and ground truth 

the authors claim that the extraction procedure yielded almost 

the same values as ground truth when considering construction 

errors. The paper concludes that the extraction of road 

information from LiDAR images is more efficient than 

traditional manual methods. 

In summary, although there have been several attempts to 

utilize LiDAR data in extracting vertical alignment attributes 

of roads, more research is clearly required in this area.   

3.6 Pavement Condition Assessment and Monitoring  

A common application for LiDAR data in highway 

engineering is pavement condition assessment and 

rehabilitation. LiDAR images produces closely spaced points 

with accurate positional details, this enables the creation of 

surfaces and meshes which represent the roads surface. 

Deviations in those surfaces can be analyzed to assess the 

pavement conditions. Several studies explored pavement 

condition assessment using laser data.  

For example, Gräfe [32] developed a model which uses 

LiDAR to perform guided roadway milling. The model works 

by creating a digital surface model of the road and analyzing 

the roads cross section at regular intervals. The study reported 

accuracy of up to 0.004m in height.  

Tang, et al. [33], developed three different algorithms to assess 

the flatness of concrete from LiDAR images. According to the 

authors, the algorithms were able to detect surface flatness 

defects as small as 3cm across the road surface and 1mm thick. 

This level of accuracy was achieved using LiDAR scans which 

were made 20m away from the assessed location.  

Tsai and Li [34] attempted the detection of pavement cracks 

from 3D laser scans. The authors proposed a technique by 

which cracks can be segmented using a dynamic optimization-

based method. The performance of the detected cracks using 

the crack segmentation procedure were compared to manually 

established ground truth using a linear-buffered Hausdorff 

scoring method. The authors conclude that cracks with widths 

of 2mm and thicker can be efficiently detected using the 3D 

laser system under a controlled laboratory environment. The 

performance of the proposed technique was also satisfactory 

under different lighting conditions and different intensity 

contrast. 

Lato, et al. [35]used mobile LiDAR to detect hazard of falling 

rocks along transportation corridors. The study involves 

differential monitoring of rock movement and failure by 

performing real-time measurements of the road side. Multiple 

mobile laser scans are compared to identify potential rock 

movement.  The measurements were extracted using 3D 

metrology software PolyWorks. The authors conclude that 

multiple scans using a mobile LiDAR system are useful in the 

detection of small rock block release (sub 15cm). 

Embankment slope instability was also assessed by Miller, et 

al. [36]. The authors used terrestrial laser scans to test for slope 

failure and extract slope features in transportation corridors. 

The slope deformation and failure is examined at two 

locations. The study found that, for both sites, the detection of 

minor changes, such as soil creep and surface runoff was 

possible using the laser scans, however, vegetation was found 

to be a confounding factor to the detection. The authors used a 

least squares surface matching algorithm to filter out the 

vegetation, whichresulted in detection of change at a 

centimetric precision level. 

3.7 Sight Distance Assessment 

In recent years, research has turned to using LiDAR data in 

sight distance assessments. Although, in theory, designing 

curves based on the minimum stopping sight distance 

requirements ensures that this distance is available at any point 

along the curve, the assumptions associated with the estimation 

procedure and certain project constraints (financial or 

practical) mean that there may be locations along a highway 

where minimum requirements are not met. Moreover, highway 

features may change after construction with maintenance 

activities and pavement operations often affecting the original 

design of highways. Similarly, the addition of roadside 

structures such as buildings or trees may limit the available 

sight distance in the post construction stage.  

Khattak and Shamayleh [37]used aerial LiDAR data to assess 

highway stopping and passing sight distances. Aerial LiDAR 

data was collected along Iowa Highway 1 (also known as 

Solon Bypass). The data was used in ArcGIS to create a 

Triangulated Irregular Network (TIN) surface. The created 

surface was inspected visually and any potential problematic 

locations (in terms of stopping and passing sight distance) 

were marked. Furthermore, the Line of Sight tool (in ArcView) 

was used to further narrow down and identify problematic 

locations. The authors found ten locations where sight distance 

was limited. Later, a field validation was conducted and the 

results were validated.  

Castro, et al. [38] also used ArcGIS to develop a method to 

obtain available sight distances. The method involved the 

creation of a Digital Terrain Model (DTM) raster, which, along 

with an observer input, allows for the computation of 

Viewsheds. Viewsheds denote areas on the raster that are 

visible for the observer. All visible areas are converted into 

polygons and then intersected with a vehicle trajectory 

obtained from GPS. The distance between the observer and the 

closest intersection is taken as the available sight distance. The 

sight distances obtained were compared to values given by 

highway design software, Trivium. Although, statistical 

analysis showed no significant difference between the obtained 

and design data, there were several locations where the design 

software reported shorter sight distances, as it can better detect 

vertical curve obstructions. 

A few years later,Castro, et al. [39] developed an automated 

method for sight distance detection using ArcGIS tools. The 
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method uses aerial LiDAR data to create a Digital Terrain 

Model (DTM). The visibility of multiple target points from a 

single observer are then assessed using ArcGIS tools until an 

obstruction is detected. At that point the available sight 

distance is noted as the distance between the observer point 

and the last visible point. The obtained sight distances are 

compared to those found in [38] using Kolmogorov-Smirnov 

and Wilcoxon tests revealed no significant differences.  

In a different study, Castro, et al. [40] attempted to show 

differences in accuracy between DTM (bare ground) and the 

Digital Surface Model (DSM) also known as Triangulated 

Irregular Network (TIN) surfaces when extracting sight 

distance information. The paper used both mobile and aerial 

data for two DSMs. Kolmogorov–Smirnov and Mann–

Whitney–Wilcoxon tests were used to measure any differences 

in sight distance outputs using the two surface models. The 

results showed a significant difference between all three 

surfaces. Specifically, DSMs were found to have shorter sight 

distances than DTMs, which means that more obstructions can 

be picked up. Comparisons between the aerial and mobile 

DSMs showed that mobile DSMs had a greater density which 

allows for a higher DSM resolution, leading to a more accurate 

representation of the environment.  

Tsai, et al. [41], was one of few studies which attempted 

analyzing sight distance at intersections from LiDAR data. 

Although the authors do not assess sight distance in particular, 

they propose a manual method which can be used to detect 

obstructions at an intersection by analyzing aerial LiDAR data. 

The first step in the procedure involves offsetting GPS points 

representing the road’s centreline so that they trace the 

centerlines of the travel lanes on the major and minor roads 

instead. Based on the type of control and posted speeds at the 

analyzed intersection, the authors determine the dimensions 

and the edges sight triangle which must be kept clear of any 

obstruction. The triangle is overlayed onto a digital surface 

model created using the LiDAR data and LiDAR market 

software is used to perform a plane of sight analysis between 

the observer and all target points. This process yields a raster 

grid of visible and nonvisible cells which are overlayed on the 

sight triangle. Sight distance was computed based on the 

outcomes. Before assessing the proposed method, the authors 

highlighted the importance of removing overhanging objects 

such as cables from the LiDAR data before performing the 

assessment since those objects result in false obstructions 

when creating surface models. The obstruction information 

obtained using the proposed method was compared to field 

data collected at an intersection, The authors conclude that the 

proposed technique was effective in determining 92% of 

obstructions. This outperformed normal on-site line of sight 

assessment which was only effective in detecting 64% of 

obstructions. Missed obstructions were often objects which 

were present between consecutive lines of sight.  

As evident from the review, only a handful of studies have 

attempted using mobile LiDAR data in assessing sight distance 

along highways. In general, the review shows that not many 

studies were able to test the repeatability of the developed 

algorithms since testing was mostly conducted on a single 

segment, in addition, some of the algorithms developed 

required manual user input at some stages of the 

implementation. Moreover, although stopping sight distance 

has been assessed in a few papers, to the best of our 

knowledge, no previous studies have attempted assessing 

passing sight distance and only a single study has attempted 

the assessment of intersection sight distance.  

3.8 Vertical Clearance Assessment 

Various techniques have been used to conduct vertical 

clearance assessment on highways, one of which is through 

using LiDAR data. Although some municipalities still use 

manual methods such as theodolites and total stations, other 

digitized devices have recently been adopted. For instance, 

many DOTs use digital measuring rods and electronic 

measuring devices [42], similarly, clearance assessment using 

photolog data has also been previously attempted [43].  

Terrestrial LiDAR scanning has also been used to assess 

clearance with the aim of minimizing human error associated 

with conventional surveying tools. In a paper by Liu, et al. 

[44], static terrestrial LiDAR scans of a bridge deck and the 

ground points beneath the deck were used to assess vertical 

clearance. The authors developed an algorithm where scanned 

ground points are automatically matched to bridge deck points 

which fall within a certain margin of the vertical plane 

perpendicular to the ground surface. The algorithm loops 

through all points until all points on the ground surface are 

matched to points on the bridge deck. Although, this technique 

increases the likelihood of determining the actual minimum 

clearance beneath a bridge, static LiDAR scanning means that 

disruptions to traffic and safety concerns still exist. Moreover, 

network level analysis is still not possible since the technique 

involves conducting site visits and scanning each bridge on the 

network individually.  

 

Fig 4: Clearance Using Mobile LiDAR 

Puente, et al. [45] used mobile LiDAR data in the assessment 

of vertical clearance in tunnels. The authors propose a semi-

automated algorithm where cross sections along the trajectory 

of the tunnel are first extracted and used to measure the 

clearance. The method involves using lane markings to define 

the edges of the travel lanes at which the clearance must be 

evaluated. The edges are then matched with the points at the 

roof of the tunnel and the cross section of the of the tunnel is 

defined using convex hull before measuring the clearance. 

Although the results were encouraging, with relative error 

between ground truth and detected clearance not exceeding 1% 

for most cross sections, the algorithm was only used to assess a 

portion of the point cloud data. As to why the full point cloud 

was not used to test the algorithm in their study, the authors 

cited loading time as the main issue.  

It is worth noting that a few studies have also attempted 

utilizing LiDAR point cloud data for structural assessment of 

bridges, see, for example, [46-49].  

IV. RESULTS AND DISCUSSIONS 

As evident from the review, there seems to be a general 

appreciation for the potential value of LiDAR in transportation 

applications. However, there is still a need for more research 
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and efforts even in areas where there has been a significant 

amount of works.  

It is clear from the review that a large portion of pervious 

research has concentrated on extraction of traffic sign 

inventory and lane markings from LiDAR data. The main 

reason such features have attracted more interest than others is 

because filtering such features is less complicated due to their 

reflective properties. Traffic signs and lane markings typically 

have high reflective properties. Consequently, LiDAR points 

representing those objects have higher intensity values. This 

unique range of intensity facilitates the isolation of those 

features from the rest of the point cloud.  

While many studies have attempted extracting lane 

markings and traffic sign information from LiDAR, more 

research is still required in these areas. As for lane marking 

extraction, most studies which exist in the literature todayonly 

tested their algorithms on short segments, this raises concerns 

about the processing times associated with the proposed 

extraction procedures, particularly if they were to be replicated 

on longer segments. Moreover, the fact that most of the 

algorithms developed were only tested on straight segments 

also raises concerns about the applicability of the proposed 

techniques to segments where horizontal curves exist.  

 

Fig 5: LiDAR Clusters of Traffic Signs 

As in the case of lane markings more work is needed in 

the areas of traffic sign extraction. The clear majority of 

existing studies in this area have been limited to inventorying 

traffic signs only. More research is clearly required in areas 

related to classifying traffic signs into different types of signs 

where possible (i.e. warning signs, route guidance signs, etc.). 

As seen in Fig 3, point cloud data extracted for individual 

signs takes well defined shapes. Hence, automated 

classification of signs based on shape is achievable. Similarly, 

more research is needed in areas related to the assessment of 

traffic sign refelectivity using mobile LiDAR. Although the 

variety of factors affecting the retro-intensity values and 

accounting for those factors make such assessments extremely 

challenging [50], the few attempts which exist in the literature 

show that such assessments are possible [2].   

The review also highlights the need for more research in 

the extraction of road geometric elements from LiDAR data.  

In summary, despite the huge effort that has been put in by 

researchers in recent years, this paper shows that more 

research is still required and warranted. While some areas have 

been researched more than others, the paper shows that 

potential for more research exists regardless of the application. 

Future research can extend in four different streams (i) 

researching the extraction of new features (ii) improving the 

processing time required to extract features and performing 

assessments (iii) developing new algorithms which can be used 

to achieve higher success rates compared to existing 

algorithms and (iv) increasing the level of automation in 

extracting different features. 
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