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Abstract:  The extensive adoption of high-throughput 

genomics, microarray, and deep sequencing technologies has 

accelerated the possibility of more complex precision medicine 

research using very large amounts of heterogeneous data [1]. 

The availability of this data allows data scientists and 

clinicians to develop tailored individual strategies. Therapeutic 

and preventive treatments can be proposed, with greater 

accuracy, targeting subgroups of patients for specific illnesses 

using large amounts of genomic, clinical, lifestyle, and 

environment data [2]. Next generation sequencing (NGS) 

technology is key in supporting precision medicine research; 

however, the data‘s volume and complexity poses challenges 

for its clinical application [3]. While Big Data‘s analytics 

could uncover hidden patterns, new correlations, and other 

insights through the examination of large-scale data sets, it is 

still difficult to master [4]. In this paper, we present what is 

required of future large-scale precision medicine platforms in 

terms of data extensibility and the scalability of processing on 

demand. It presents a proposed platform architecture as well as 

open-source Big Data technologies that would allow to easily 

enrich a flexible data schema, provide the power needed to 

load large amounts of data and make this centralized database 

available for specific precision medicine research. 
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I. INTRODUCTION 

The terms precision or personalized medicine, translational 

medicine and translational research are used interchangeably in 

the literature [5][6][7][8]. In this paper, we use the term 

precision medicine to refer to an emerging research field aimed 

at personalized disease treatment and prevention that takes into 

account individual differences in genes, patient treatment 

history, environment, and lifestyle. It integrates the 

advancements in molecular biology using clinical trials 

[9][10]. This personalized approach to patient treatments will 

allow doctors and researchers to predict, with greater accuracy, 

the course of treatment and prevention strategies to apply for a 

particular disease for specific groups of individuals. It will also 

allow for the creation of therapeutic and preventive strategies 

targeting the specific needs of patients on the basis of genetic, 

biomarker, phenotypic and psychosocial characteristics, which 

distinguish one patient from another [2]. For precision 

medicine research to be effective, computational models that 

integrate data and knowledge from both clinical and genetic 

research in order to gain a better understanding of disease are 

required [11]. 

In recent years, numerous precision medicine platforms 

have emerged that propose innovative solutions to collect, 

manage, and analyse large amounts of genomic and clinical 

data to be used in precision medicine research. These require 

that the researcher has access to electronic healthcare records 

(EHR) that contain patient clinical data. These platforms often 

offer functionality and programming frameworks that are 

restricted to individual EHR data formats [12]. This is recently 

changing as more and more solutions are appearing.  

Canual et al.[13] analysed the following features for the 

seven precision medicine research platforms listed below: 

Information content (clinical and omics data), privacy 

management environment, analysis supports, visualization 

tools, interoperability support, system requirements, 

programming language and platform support [13]: 

1. Biology-Related Information Storage Kit (BRISK) [14] 

which is an open source Web application providing 

access to phenotype and genotype data allowing 

researchers to conduct GWAS analysis; 

2. Integrated Clinical Omics Database (iCOD) [15][16] 

that allows the researcher to collect and combines data 

pertaining to hepatocellular carcinoma (HCC) cases; 

3. Integrating Data for analysis, Anonymization and 

SHaring (iDASH) [17] which is a computational 

collaborative cloud infrastructure conceived to share 

patient data for research; 

4. tranSMART which is a software framework that allows 

the analysis of integrated data for the purpose of 

hypothesis creation, hypothesis validation, and cohort 

discovery needed in Precision Medicine; 

5. Oncology Data Retrieval System (OncDRS) [18][19]. A 

system that query and integrates clinical and genomic 

data from heterogeneous sources; 

6. Georgetown Database of Cancer (G-DOC) [13][19], A 

data integration and interrogation knowledge discovery 

system for oncology and precision medicine; and 

7. cBio Cancer Genomics Portal for Cancer Genomics 

[19] [20], an open-access platform to explore cancer 

genomics data. 

The first feature is whether the platform supports genetic 

data. We noticed that all platforms store the genetic 

information of a patient. The second feature assessed is 

whether the platform supports other data required for precision 

medicine research. We also conclude that all these platforms 

can store clinical and some can also store environmental data 

about a patient.  

The third feature assessed concerns the data model 

extensibility: is the platform capable of supporting any other 

patient data requirement that does not exist in the current 

platform data model without incurring a major effort? We 

found that none of the platforms offered the possibility to 

easily adjust its proposed data model for specific precision 

medicine analysis needs. Fourth, we assessed a criterion about 

theIT infrastructure portability: is the precision medicine 

platform proposed easily portable to different cloud computing 

suppliers? Here again, we did not find any indication of the 

possibility to move across cloud suppliers. In some cases you 

are locked in the platform IT infrastructure, which does not 

explain where/who, operates it. 

For the fifth feature,we tried to assess the data scalability 
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offered by the platform: does the platform allow the researcher 

to efficiently load very large amount of data without incurring 

any data model or infrastructure limitations?We concluded that 

the platforms were designed to allow for the input of a large 

volume of data about patients. The sixth feature assessed 

addresses the cloud infrastructure scalability: doesthe platform 

allow processing on a cloud distributed scalable infrastructure, 

and provide tools to scale as needed? We did not find any 

indication of the possibility to scale the cloud infrastructure as 

required. Finally, we were looking for a research 

reproducibility function: does the platform allow researchers to 

reproduce their research at any time without a great deal of 

effort.We found that most platforms offer this possibility. 

II. PRECISION MEDICINE PLATFORMS FUTURE 

DIRECTION 

The precision medicine platformof the future will need to 

offer all the features presented earlier and more. Its features 

should be available as SaaS (e.g.software as a service) and 

allow its operation on any cloud-computing supplier. It should 

also have been designed and programmed using open-

sourceBig Data technologiesthat cheaply allowfast in-memory 

processingof large amounts of patient data. Hospital research 

labs will want to profit from the agility of a ‗pay as you 

use‘approach offered by cloud computing suppliers so that 

they do not have to wait and line up to run their analysis on 

university or government research supercomputers/clusters or 

buy theirown hardware and software. Most of all, a key ability 

required by the precision medicine researchers will be allow 

them to easily adjust the data schema of the database to their 

specific research needs as they evolve and change. Finally, 

they will want to scale the cloud IT infrastructure as needed to 

get their results as fast as they need them. 

III. PROPOSING AN EXTENSIBLE PRECISION 

MEDICINE PLATFORM 

 

        Fig. 1 Future Precision Medicine Platform      

We have designed such a platform, with the help of AWS 

Canada researcher grant. This first prototype version of our 

precision medicine platform of the future has been designed in 

three main components: 

1. Input Data: Allowsfor the combination of different 

data sources and their data storage. The main data 

sources are trial cohorts and electronic health care 

records. The volume of this data varies and increases 

continuously; 

2. Data integration: Allows for the collocating of the 

required precision medicine research data in one single 

data model that can be implemented on a scalable cloud 

infrastructure; 

3. Data Analysis:  Researchers can use any data analysis 

tool to conduct their research analysis and mine this 

data.  

In addition, the precision medicine platform of the future 

needs to automate the different data preparation steps (e.g. 

steps 1 to 8 of figure 2) involved in a typical Precision 

Medicine research activity: 

1. Identification/collection of the data required for the 

research goals; 

2. Mapping of the data fields to the existing data model to 

check if it contains all the data fields needed; otherwise, 

can be used the data creation model component to add 

the missing data elements; 

3. Use the scalable data migration infrastructure setup 

component to configure the data migration computer 

infrastructure for the performance needed; 

4. Start the data migration component to load the data 

from the many data sources into the integrated 

database; 

5. If the volume of the data to be loaded is very large, such 

as for genetics, the researcher can easily scale up the 

computer infrastructure by adding new instances; 

6. Once the data is loaded and ready for analysis, the 

researcher can use the data analysis infrastructure setup 

component to configure the infrastructure and 

environment required to start the analysis; 

7. The researcher conducts his precision medicine analysis 

on the data; 

8. Based on the analysis performance needed, the 

researcher uses the scale data analysis framework 

structure tool, at any time, to scale up the computer 

infrastructure to fit the performance requirements for 

their analysis goals. 

 

Fig. 2 Future Precision Medicine Data Analysis Pipeline 

By automating these steps, researchers that do not have 

specialized IT skills available in their lab should be able to 

prepare their data by themselves in a few steps.  
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IV. PROPOSED FRAMEWORK SOFTWARE 

ARCHITECTURE 

The proposed framework designed in our prototype 

includes a number of APIs, that use: 1) an already proven to be 

scalable data model; 2) open-source Big Data technologies, 

like the Apache Hadoop distributed file system (HDFS), 

Spark, Parquet and Yarn to ensure the scalability in processing 

high volumes of data; and finally 3) a scalable cloud 

computing infrastructure on the cloud (e.g. Azure, AWS or 

Google Cloud). Figure 3 shows how we have architectured 

each of these freely available open-source software 

components to meet our requirements. 

 

Fig 3. Proposed future precision medicine platform 

V. PRELIMINARY RESULTS 

To test this proposed platform design, we conducted an 

initial case study which involved preparing the data for a 

precision medicine study that concerned developing a 

predictive model for the complications of chronic kidney 

disease (CKD) in patients with type 2 diabetes using the 

patients‘ genetic variant, clinical and environmental data. It 

uses a list of informative genetic variants encompassing 

relevant risk factors for CKD complications, selected from 

publicly available GWAS data and tests them on the 

ADAVANCE cohort data [21], [23]. For this case study we 

have followed each step recommended by Figure 2.  

The first step is to gather the data. With the researcher, we 

located the data of 1118 patients that were previously 

genotyped using Affymetrix‘s GeneChip arrays resulting in101 

GB of data located in many individual files of .Gen format. 

Then we located and studied the clinical data of these patients 

that was stored in a Postgres relational database.  

In step 2 of Figure 2, we proceeded with the data model 

adjustment for this specific precision medicine study. The 

default data schema for the genotyped data did not need any 

adjustment, as it is quite standard. Alternatively, we needed to 

adjust the database schema to add the clinical data as well as 

the analysis schema specific to this study (see Figure 4). It 

required to add the following five data classes: personal, visit, 

diagnostic history, phenotype and medical treatments. This 

data extension is required as the data items found in the 

Postgres databases comes from the ADVANCE trial case-

cohort [21], [22] and needs to be added for our future analysis. 

 

 

Fig 4. Added clinical and analysis data schemas 

Since our goal is to enable a large-scale and complex 

precision medicine analysis of this patient data using Big Data 

and machine learning algorithms we need to collocate all this 

data in a centralized database schema. The colocation of all 

this data, in a single database, can allow precision medicine 

researchers to exploit the power of popular open source Big 

Data technology(e.g. Hadoop, Spark, Avro and Parquet) 

cheaply to try to identify potential correlations such as 

candidate genes responsible for specific diseases and impact of 

therapies and medications on a patients‘ health. This precision 

medicine analysis is typically evaluated using a patients‘ 

genetic data, clinical data as well as other data such as age, 

gender, ethnicity and weight. Another data schema extension is 

needed and presented in the box on the right side of Figure 4. 

Its aim is to allow researchers to better organize, track, and 

reproduce the results of an analysis. It is composed of the 

following two main data classes: Analysis and Simulation. The 

whole process, of the database schema extension, took only 2 

minutes using our prototype data creation model component 

API that was designed to easily add the missing data elements.  

In step 3, we setup the cloud infrastructure for the data 

conversion/loading process.It took less than 8 minutes to 

configure the Amazon Web Services (AWS) cluster of servers. 

Using AWS for our case study, we configured a cluster of 10 

Linux instances (m4.4xlarge) ready for use. The configuration 

allocated 144 cores and 557 GB of memory in total. 

In step 4, our prototype platform API‘s are used to 

convert/load the data into the target database schema. First, the 

genetic data of each of the 1118 genotyped patients (101 GB) 

needed to be converted from the Oxford genotype file format 

(.Gen) generated by the Affymetrix GeneChip arrays. This 

process took 3 hours 18 minutes. Second, the ADVANCE 

clinical needed to be extracted from its Postgres relational 

database (71 MB) and loaded in the target database. This 

process took only 1.4 minutes. 

Next we conducted some extra experimentation to 

demonstrate the utility ofthe step 5 of Figure 2. We proceeded 

to scale up the processing of the patient genetic migration step. 

We noticed that it was possible, in only 50 seconds, to add an 

instance to the AWS cluster. For amore powerful 

infrastructure, it was also easily possible to add 5 instances but 

this took 3 additional minutes to be executed. This experiment 

concluded that a researcher that is unhappy with the 3.3 hours 

wait for loading large genetic files can quickly adjust the 

power of the cloud infrastructure as required to reduce this 

time. For this first case study, we did not go further in our 

experimentation.  

Our last research taskof this case study was to calculate the 

cost associated with thisprecision medicine data preparation. 

We were pleasantly surprised to find that the total cost for: 1) 
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the data schema extension(2 min.); 2) the cloud cluster 

infrastructure setup (8 min.); 3)the data conversion/migration 

(genetic data 3 h.18 min. and clinical data 1.4 min.) was only 

32$ USD at 0.80$USD/hour for each instance (in this test we 

used 10 m4.4xlarge instances). Next, add to this the cost the 

storage of 101.07 GB of data costing only $2.32/month.Last, 

there is another small fee to consider in this budget. The AWS 

requests price (e.g. Get and Put at $.005 per 1,000 requests) 

that did not go over $4.  

Now, in less than 4 hours and for this very low cost under 

$40 USD, the database is ready for a large-scale precision 

medicine analysis.  

CONCLUSIONS 

Novel precision medicine platform designs should allow 

researchers to easily adjust the data model and scale the data 

preparation/loading on demand. It should also allow the 

analysis activities to be conducted on a single database 

designed for lightning fast and scalable processing. In this 

paper, we presented a proposed design that includes popular 

Big Datatechnologies and stepsto easily prepare the data for 

any research involving a patient‘s genetic, clinical and 

environmental data. A prototype of this platformwas 

experimented and demonstrated a number of advantages: the 

possibility to easily and quickly adapt the data schema for any 

precision medicine analysis requirement; a simple process to 

prepare the infrastructure for converting/loading large amount 

of genetic and clinical data; and the possibility to scale up the 

cloud supplier cluster infrastructure when needed. Finally we 

showed the low cost associated with the preparation of this 

large and complex data. 

NEXT STEPOF THIS RESEARCH PROJECT 

In our next publication, we describe how this framework 

was implemented and trialled by the precision medicine 

researchers, at the Centre Hospitalier Universitaire de 

l‘Université de Montréal (CHUM), to conduct step 7 (data 

analysis) a large-scale precision medicine analysis of diabetes 

patients usinga clinical data set including 2394 patients anda 

their genetics data set (15,213,486,960 rows) as well as the 

Single nucleotide polymorphisms (SNP) list associated with 

eGFR gene and the urinary albumin to creatine ration 

(ACR)risk group. The data that was reshaped into one single 

data table comprising 112 columns: where 76 columns were 

used for genetic data and 36 columns represented clinical data 

(i.e. age, gender, region) across 1118 rows (i.e. 1 row per 

patient). The analysis included 10 simulations (iterations) with 

each of the following three classification models: logistic 

regression, random forest and neural networks to develop a 

CKD predictor. 
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