Special Issue Published in International Journal of Trend in Research and Development (IJTRD), ISSN: 2394-9333, www.ijtrd.com

On Suns, Moons and Best Approximation in M-Space

¹R.S.Karunya, ²N. Reshma

¹Assistant Professor, ²Student

^{1,2}Department Of Mathematics, St. Joseph's College Of Arts And Science For Women, Hosur, India

Abstract: In this paper we discuss suns and moons in M-spaces and characterize these via best approximation thereby extending corresponding known results in normed linear spaces to M-spaces.

I. INTRODUCTION

The concept of a sun in Approximation Theory was first introduced in normed linear spaces by Klee(1953)but the terminology 'sun' was proposed by Effimov and Steckin(1958). We recall that a set V in a normed linear space X is a sun iff whenever $v_0 \in V$ is a best approximation to some element $x \notin V$ then v_0 is a best approximation to every element on the ray from v_0 through x. Since every convex set in a normed linear space has this property, a sun may be regarded as a generalization of a convex set. L.P. Vlasov, who developed the concept further in Vlasov(1961), showed that in a smooth Banach space every proximinal sun is convex. The concept of a moon, which is a generalization of sun, was introduced by Amir and Deutsch(1972) and their special interest was in determining those normed linear spaces in which every moon is a sun. Knowing such spaces is quite useful as it is much easier to verify that a given set is a moon than verify it is a sun.

A. Normed Linear Space

Let V be a linear space. We recall that a norm is a function from V into non-negative real numbers. This function is written $\|.\|$ and satisfies the following three properties:

1) $\|v\| \ge 0$ with equality if and only if v=0

2) $\|v\| = |\lambda| \|v\|$ for any scalar λ

3) $\| \mathbf{v} + \mathbf{w} \| \le \| \mathbf{v} \| + \| \mathbf{w} \|$ (the triangle inequality)

Then, $(v, \|.\|)$ is called *normed linear space*.

The *norm* gives us a notion of distance in v. if w, v \in V, then the distance from w to v (or v to w) is ||v-w||

B. Convex

A set S, in a linear space is convex .if $s_1,s_2\,\varepsilon S$ implies that $\lambda_1\,s_1\,+\lambda_2\,s_2\varepsilon S$

if λ_1 and λ_2 are non negative and

 $\lambda_1 + \lambda_2 = 1$

If S is empty or consists of one point, then it is clearly *convex*.

C. Best Approximation

1

Let G be a nonempty subset of a real normed linear space X and let an element $f \in X$ be given. The problem of *best approximation* is to determine an element $g_f \in G$ such that

$$f - g_f \| = \inf_{g \in G} \| f - g \|$$

such an element is called a *best approximation* to f from G ,and

$$d(f, G) = \inf_{g \in G} ||f - g||$$

is called the *minimal deviation* of f from G.

 $\begin{array}{l} \text{The set of all elements } g_0 \in G \text{ that are called best} \\ \text{approximation to } x \in X \text{ is} \\ P_G(x) = \{ \begin{array}{l} g_0 \in G \colon \| \ x - g_0 \| \leq \| \ x - g \| \text{ for all } g \in G \end{array} \} \end{array}$

D. M-Space

A metric space (X, d) in which for every x, $y \in X$ and for every t, $0 \le t \le 1$ there exists exactly one point $z \in X$ such that d(x, z) = (1 - t)d(x, y) and d(z, y) = td(x, y) is called an Mspace

E. Cone

A subset V of an M-space (X, d) is said to be a cone with vertex v_0 if $G(v_0, y, -) \subseteq V$ whenever $y \in V$.

For $v_0 {\in} V, \; P_v^{-1}(v_0) = \{x \; {\in} X : v_0 {\in} P_v(x)\}$. It is easy to prove that if $\; x {\in} P_v^{-1}(v_0)$ then

 $x_{\lambda} \in P_v^{-1}(v_0)$ for every $x_{\lambda} \in G[v_0, x]$ i.e. $v_0 \in P_v(x_{\lambda})$. On the other hand, v_0 may not be in $P_v(x_{\lambda})$ for $x_{\lambda} \in G_1(v_0, x, -)$.

F) Proximinal Set

If $P_G(x)$ contains at least one element, then the subset G is called a *proximinal set*.

In other words, if $P_G\left(x\right)\neq \emptyset$ then G is called a proximinal set

The term *proximinal set* (is a combination of proximity and maximal)

G) Solar Point

If V is a proximinal subset of an M-space (X, d) , a point $v_0{\in}V$ is called a solar point

 $\begin{array}{lll} (Figure) \mbox{ of } V \mbox{ if } x \in P_v^{-1}(v_0) \mbox{ implies } & x_\lambda \in P_v^{-1}(v_0) \mbox{ for every } \\ x_\lambda \in G_1(v_0, \ x, -). \mbox{ The set } V \mbox{ is called a sun (see Fig.4.2) if for } \\ each & x \in X \setminus V \mbox{ , every } v_0 \in P_v(x) \mbox{ is a solar point of } V \mbox{ i.e.} \\ for all \ v_0 \in P_v(x), \ v_0 \in P_v(z) \mbox{ for all } z \in G_1(v_0, \ x, -). \end{array}$

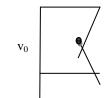
H. Example

Consider the normed linear space $R^2\ \mbox{with supremumnorm}$ and

 $V = \{(x,y) \in \mathbb{R}^2 : x \ge 0 \text{ or } y \ge 0\}$. Then V is a sun

I. Example

The set $V=\{(x,\,y)\in R^2: x^2+4y^2\!\!\leq\!\!1\}$ in Euclidean 2-space R^2is a sun.



National Conference on Prominent Challenges in Information Technology (NCPCIT-18) organized by Department of Computer Science, St. Joseph's college of Arts and Science for Women on 18th Sept 2018 **128** | P a g e

Special Issue Published in International Journal of Trend in Research and Development (IJTRD), ISSN: 2394-9333, www.ijtrd.com

Figure 1: Solar point

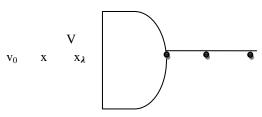


Figure 2: A set which is a sun

J. Lunar Point

Let V be a subset of an M-space (X, d). A point $v_0 \in V$ is called a lunar point if $x \in X$ and $K(v_0, x) \cap V \neq \emptyset$ imply $v_0 \in \overline{K(v_0, x)} \cap V$ where $K(v_0, x) = \bigcup \{B(z, d(z, v_0)), z \in G_1(v_0, x, -)\}$. The set V is called a moon if each of its point is lunar.

K. Example

The set $V=\{(x,\,y)\in \!\!R^2:x^2+4y^2\!\!\ge\!\!1\}$ in Euclidean 2-space R^2 is a moon.

We shall see that each sun in an M-space is a moon. However, the converse is not truEehe following two theorem give necessary and sufficient condition for a proximinal subsets of an M-space to a sun. we have:

II. THEOREMS

A. Theorem

A proximinal subset V of an M-space (X, d) is a sun if and only if for any $v_0 \in V$, the set $P_v^{-1}(v_0)$ is a cone with vertex v_0 .

Proof

Suppose V is a sun and $x \in P_v^{-1}(v_0)$ i.e. $v_0 \in P_v(x)$.

We want to show that $G(v_0, x, -) \subseteq P_v^{-1}(v_0)$.

Since $v_0 \in P_v(x)$ and V is a sun, $v_0 \in P_v(z)$ for all $z \in G_1(v_0, x, -)$ and consequently for all $z \in G(v_0, x, -)$ i.e. $z \in P_v^{-1}(v_0)$ for all $z \in G(v_0, x, -)$ i.e. $P_v^{-1}(v_0)$ is a cone with vertex v_0 . Conversely,

let $x \in X \setminus V$ and $y \in P_v(x)$ i.e.

 $x \in P_v^{-1}(y)$ where $y \in V$.

Since $P_v^{-1}(y)$ is a cone with vertex y,

 $G(y, x, -) \subseteq P_v^{-1}(y)$

i.e. $y \in P_v(z)$ for all $z \in G(y, x, -)$.

Hence V is a sun.

B. Theorem

A proximinal subset V of an M-space (X, d) is a sun if and only if for any $v_0 \in V$ and $x \in P_v^{-1}(v_0)$, $K(v_0, x) \cap V = \emptyset$.

Suppose V is a sun.

Let $v_0 \in V$ and $x \in P_v^{-1}(v_0)$.

Since $v_0 \in P_v(x)$ and V is a sun, $v_0 \in P_v(z)$ for all $z \in G(v_0, x, -)$.

To show $K(v_0, x) \cap V = \emptyset$.

Suppose $u \in K(v_0, x) \cap V$

i.e. $u \in B(z, d(z, v_0))$ for some

$$z \in G_1(v_0, x, -)$$

i.e. $d(z,\,\,u) \leq d(z,\,\,v_0)$ and so $v_0 {\notin} P_v(z)$ as $\qquad u \in V$, a contradiction.

Therefore $K(v_0, x) \cap V = \emptyset$.

For the converse part,

suppose V is not a sun.

Then there exists $x\in X\setminus V$ and $v_0{\in}\ P_v(x)$ such that $v_0{\notin}\ P_v(z)$ for some

 $z \in G(v_0, x, -).$

Then $d(z, v_1) \le d(z, v_0)$ where $v_1 \in P_v(z)$ i.e. $v_1 \in B(z, d(z, v_0))$ for some

 $z\in G(v_0,\ x,-).$ i.e $v_1\in K(v_0,\ x).$ Also $v_1\in V$ and therefore $K(v_0,x)\cap V{\neq}\emptyset,$ a contradiction.

Hence V is a sun.

C. Lemma

Let V be a subset of an M- space (X, d) then , $K(v_0, x) = K(v_0, y)$ for all $y \in G[v_0, x]$, where $x \in X$, $V \subset X$ and $v_0 \in P_v(x)$.

Proof

 $K(v_0, x) = \cup \{B(z_1, d(z_1, v_0)), z_1 \in G_1(v_0, x, -)\},\$

 $K(v_0, y)=\cup \{B(z_2, d(z_1, v_0)), z_2 \in G_1(v_1, y, -)\}.$

Let $z \in K(v_0, x)$ then $z \in B(z_1, d(z_1, v_0))$ for some $z_1 \in G_1(v_0, x, -)$.

Now any $z_1 \in G_1(v_0, x, -)$ is also a point on $G_1(v_0, y, -)$ i.e. $z_1 = z_2$ for some

 $z_2 \in G_1(v_0, y, -)$

i.e. $z \in \bigcup \{B(z_2, d(z_2, v_0)), z_2 \in G_1(v_0, y, -)\}$. Therefore,

(1) $K(v_0, x) \subseteq K(v_0, y)$

Let $z \in K(v_0, y)$ then $z \in B(z_2, d(z_2, v_0))$ for some $z_2 \in G_1(v_0, y, -)$.

If $z_2 \in G_1(v_0, x, -)$ then $z \in K(v_0, x)$ and so $K(v_0, y) \subseteq K(v_0, x)$.

If $z_2 \in G[y, x]$,

consider $z' \in G_1(v_0, x, -)$.

Then

 $d(z, z') \le d(z, z_2) + d(z_2, z')$

National Conference on Prominent Challenges in Information Technology (NCPCIT-18) organized by Department of Computer Science, St. Joseph's college of Arts and Science for Women on 18th Sept 2018 **129** | P a g e

Special Issue Published in International Journal of Trend in Research and Development (IJTRD), ISSN: 2394-9333, www.ijtrd.com

 $\leq d(z_2,\,v_0) + d(z_2,\,z')$

 $= d(z', v_0).$

Therefore $z \in B(z', d(z', v_0))$ and so

 $z \in K(v_0, x).$

Consequently

(2) $K(v_0, y) \subseteq K(v_0, x)$.

(1) and (2) imply $K(v_0, x) = K(v_0, y)$.

The following theorem shows that we may assume in the definition of lunar point that x has v_0 as a best approximation from V.

D. Theorem

Let V be a subset of an M-space (X, d) and $v_0 \in V$. Then the following are equivalent: v_0 is a lunar point whenever v_0 is a best approximation to x with $K(v_0, x) \cap V \neq \emptyset$ then $v_0 \in \overline{K(v_0, x)} \cap \overline{V}$.

Proof

 \Rightarrow (ii) is trivial.

⇒(i).

Let $x \in X$ and $K(v_0, x) \cap V \neq \emptyset$.

To show $v_0 \in \overline{K(v_0, x) \cap V}$.

If v_0 is a best approximation to x then by (ii), $v_0 \in \overline{K(v_0, x) \cap V}$.

If v_0 is not a best approximation to x then two cases arise:

(a) v_0 is not a local best approximation to x,

(b) v_0 is a local best approximation to x.

Case (*a*):

If v_0 is not a local best approximation to x i.e. for all $\in \ge 0$ there exists $v_{\epsilon} \in V$

Such that $d(v_{\epsilon}, v_0) \leq \in$ and $d(v_{\epsilon}, x) \leq d(v_0, x)$.

Then $v_{\epsilon} \in B(x, d(v_0, x)) \subset K(v_0, x)$.

Therefore every neighbourhood of v_0 contains an element v_ε of $K(v_0,x)\cap V$

other than v_0 i.e. v_0 is a limit point of $K(v_0, x) \cap V$ and so $v_0 \in \overline{K(v_0, x) \cap V}$.

Hence v_0 is a lunar point.

Case (b):

If v_0 is a local best approximation to x

i.e. v_0 is a best approximation to x from

 $V \cap B(v_0, \epsilon)$ for some $\epsilon \ge 0$.

Let $z \in G[v_0, x]$ such that $d(z, v_0) \le \frac{\epsilon}{2}$

then by Lemma c $K(v_0, z) = K(v_0, x)$ and v_0 is a best approximation to z from V.

So (ii) implies

 $v_0 \in \overline{K(v_0, z) \cap V} = \overline{K(v_0, x) \cap V}$ and

therefore v_0 is a lunar point.

E. Corollary

Every sun in an M-space is a moon.

Proof

Let V be a sun.

Suppose V is not a moon

i.e. there exists $v_0 \in V$ which is not a lunar point

i.e. v_0 is a best approximation to $x \in X$ with $K(v_0, x) \cap V \neq \emptyset$

but $v_0 \notin \overline{K(v_0, x) \cap V}$.

As V is a sun, Theorem b implies $K(v_0, x) \cap V = \emptyset$

whenever v_0 is a best approximation to $x \in X$.

Since these two statements are contradictory, the result follows.

CONCLUSION

In this paper discussed about the sun and moon in M-Spaces and characterized these via best approximation thereby extending corresponding known results in normed linear spaces to M-spaces. That is the sun and moon concepts in M-spaces also called strongly convex spaces and extended some of the results proved in normed linear spaces by Amir and Deutch (1972) and Mhaskar and pai (2000) to M-spaces

References

- H.Mazaheri ,"The Nearest Points in Normed Linear Spaces" applied Mathematical Science, Vol.2, 2008, no.16.763-766.
- [2] A.L. Garkavi, The theory of best approximation in normed linear space. Mathematical analysis 1967, Moscow (1969), 75-132n[Russian].
- [3] P.K.Jain,O.P.Ahuja and Khalil Ahmad."Functional analysis". New Age International(P)Limited,1995.
- [4] Holmes,R.A A course on Optimization and best approximation,(CLNM 257,Springer)1972 [5]Ivan Singer.The theory of best approximation and functional analysis(1974).
- [5] Part III Lent term, Approximation theorem-lecture 4,Existence and uniqueness of bestapproximation.2005