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Abstract:   In this paper we discuss suns and moons in M-

spaces and characterize these via best approximation thereby 

extending corresponding known results in normed linear 

spaces to M-spaces. 

 

I. INTRODUCTION 

         The concept of a sun in Approximation Theory was first 

introduced in normed linear spaces by Klee(1953)but the 

terminology ’sun’ was proposed by Effimov and 

Steckin(1958). We recall that a set V in a normed linear space 

X is a sun iff whenever v0∈ V is a best approximation to some 

element x∉ V then v0 is a best approximation to every element 

on the ray from v0 through x. Since every convex set in a 

normed linear space has this property, a sun may be regarded 

as a generalization of a convex set. L.P. Vlasov,who developed 

the concept further in Vlasov(1961),showed that in a smooth 

Banach space every proximinal sun is convex. The concept of 

a moon, which is a generalization of sun, was introduced by 

Amir and Deutsch(1972) and their special interest was in 

determining those normed linear spaces in which every moon 

is a sun. Knowing such spaces is quite useful as it is much 

easier to verify that a given set is a moon than verify it is a sun.      

A. Normed Linear Space 

 

 Let V be a linear space. We recall that a norm is a 

function from V into non-negative real numbers. This function 

is written ǁ. ǁ and satisfies the following three properties: 
 

      1) ǁ v ǁ ≥ 0 with equality if and only if v=0 

      2) ǁ v ǁ =| λ | ǁ v ǁ for any scalar λ 

      3) ǁ v+ w ǁ ≤ ǁ v ǁ+ ǁ w ǁ (the triangle inequality) 

     Then, (v, ǁ. ǁ) is called normed linear space. 

 The norm gives us a notion of distance in v. if w, v ϵ 

V, then the distance from w to v (or v to w) is ǁ v-w ǁ 

 

B.  Convex 

         A set S, in a linear space is convex .if s1, s2 ϵS implies that 

λ1 s1 +λ2 s2ϵS 

          if λ1 andλ2 are non negative and  

λ1 +λ2 =1 

          If S is empty or consists of one point, then it is clearly 

convex. 

 

C.  Best Approximation 

 

            Let G be a nonempty subset of a real normed linear 

space X and let an element fϵ X be given. The problem of best 

approximation is to determine an element gfϵG such that 

                          ǁ f- gf  ǁ =  ǁf − gǁgϵG
inf  

such an element is called a best approximation to f from G 

,and 

                          d(f, G) = ǁf − gǁgϵG
inf  

is called the minimal deviation of f from G. 

 

 The set of all elements g0 ϵ G that are called best 

approximation to x ϵ X is   

PG(x) = { g0 ϵ G: ǁ x - g0 ǁ ≤ ǁ x - g ǁ for all    g ϵ G } 

 

D. M-Space 

 A metric space (X, d) in which for every x, y ∈ X and 

for every t, 0≤ t ≤ 1 there exists exactly one point z ∈ X   such 

that d(x, z) = (1 − t)d(x, y) and d(z, y) =td(x, y) is called an M-

space 

E. Cone 

           A subset V of an M-space (X, d) is said to be a cone 

with vertex v0 if           G(v0, y,−) ⊆V whenever y ∈V. 

         For v0∈V, Pv
-1

(v0) = {x ∈X : v0∈Pv(x)} . It is easy to 

prove that if  x ∈Pv
-1

(v0) then 

 xλ∈ Pv
-1

(v0) for every xλ∈G[v0, x]    i.e.v0∈Pv (xλ) . On the 

other hand, v0 may not be in Pv (xλ) for xλ∈G1(v0, x,−). 

F) Proximinal Set 

          If PG(x) contains at least one element, then the subset G 

is called a proximinal set. 

            In other words, if PG (x) ≠ ∅ then G is called a 

proximinal set   

          The term proximinal set (is a combination of proximity 

and maximal) 

 

G) Solar Point 

            If V is a proximinal subset of an M-space (X, d) , a 

point v0∈V is called a solar point  

(Figure) of V if x ∈Pv
-1

(v0) implies   xλ∈ Pv
-1

(v0)  for every 

xλ∈G1(v0, x,−). The set V is called a sun (see Fig.4.2) if for 

each          x ∈X \ V , every v0∈Pv(x) is a solar point of V i.e. 

for all v0∈Pv(x), v0∈Pv(z) for all           z ∈G1(v0, x,−). 

H.  Example 

         Consider the normed linear space R
2
 with supremum- 

norm and  

          V = {(x,y) ϵ R
2
: x≥0 or y≥0}. Then V is a sun 

I. Example  

 

        The set V = {(x, y) ∈R
2
 : x

2
 + 4y

2
≤1} in Euclidean 2-

space R
2
is a sun.  

 

 

  

                               v0 
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               Figure 1: Solar point  
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Figure 2: A set which is a sun 

J.  Lunar Point 

       Let V be a subset of an M-space (X, d) . A point v0∈V is 

called a lunar point if x ∈X and K(v0, x) ∩ V ≠ ∅imply 

v0∈K(v0, x) ∩ V                  where K(v0, x)= ∪ {B(z, d(z, v0)), z ∈G1(v0, 

x,−) }. The set V is called a moon if each of its point is lunar. 

K.  Example  

   The set V = {(x, y) ∈R
2
 : x

2
 + 4y

2
≥1} in Euclidean 2-space 

R
2
 is a moon.  

   We shall see that each sun in an M-space is a moon. 

However, the converse is not truEehe following two theorem 

give necessary and sufficient condition for a proximinal 

subsets of an M-space to a sun. we have: 

 

II. THEOREMS 

A. Theorem  

           A proximinal subset V of an M-space (X, d) is a sun if 

and only if for any v0∈ V , the set Pv
-1

(v0) is a cone with vertex 

v0. 

Proof 

        Suppose V is a sun and x ∈ Pv
-1

(v0) i.e. v0∈ Pv(x) .  

  We want to show that G(v0, x,−) ⊆ Pv
-1

(v0).  

     Since v0∈ Pv(x) and V is a sun, v0∈ Pv(z) for all z ∈ G1(v0, 

x,−)and consequently for all z ∈ G(v0, x,−) i.e. z ∈ Pv
-1

(v0) for 

all             z ∈ G(v0, x,−)  i.e.Pv
-1

(v0) is a cone with vertex v0.    

Conversely,  

 let x ∈ X \ V and y ∈ Pv(x) i.e. 

 x ∈ Pv
-1

(y) where y ∈ V . 

 Since Pv
-1

(y)is a cone with vertex y,  

 G(y, x,−) ⊆ Pv
-1

(y)  

  i.e. y ∈ Pv(z) for all z ∈ G(y, x,−).  

        Hence V is a sun. 

B. Theorem  

                   A proximinal subset V of an M-space (X, d) is a 

sun if and only if for anyv0∈ V and x ∈ Pv
-1

(v0), K(v0, x) ∩ V = 

∅. 

Proof  

   Suppose V is a sun.  

   Let v0∈ V and x ∈ Pv
-1

(v0).  

   Since v0∈ Pv(x) and V is a sun, v0∈ Pv(z) for all z ∈ G(v0, 

x,−).  

   To show K(v0, x)∩V = ∅.  

   Suppose u ∈ K(v0, x)∩V 

   i.e. u ∈ B(z, d(z, v0)) for some  

z ∈ G1(v0, x,−)  

   i.e. d(z, u) ≤ d(z, v0) and so v0∉Pv(z) as     u ∈ V , a 

contradiction.  

   Therefore K(v0, x) ∩ V =∅. 

   For the converse part, 

     suppose V is not a sun.  

     Then there exists x ∈ X \ V andv0∈ Pv(x) such that v0∉Pv(z) 

for some  

z ∈ G(v0, x,−).  

    Then d(z, v1) ≤ d(z, v0) where v1∈ Pv(z) i.e. v1∈B(z, d(z, v0)) 

for some  

z ∈ G(v0, x,−). i.e v1∈ K(v0, x). Also v1∈ V and therefore 

K(v0,x)∩V≠∅, a contradiction.  

         Hence V is a sun. 

C. Lemma  

      Let V be a subset of an M- space (X, d) then , K(v0, x) = 

K(v0, y) for all y ∈ G[v0, x], where x ∈ X, V ⊂ X andv0∈ 

Pv(x). 

Proof 

  K(v0, x) =∪ {B(z1,d(z1,v0)),z1∈G1(v0, x,−)},  

K(v0, y)=∪ {B(z2, d(z1, v0)), z2∈G1(v1, y,−)}. 

Let z ∈ K(v0, x) then z ∈ B(z1, d(z1, v0)) for some z1∈ G1(v0, 

x,−).  

Now any z1∈ G1(v0, x,−) is also a point on G1(v0, y,−) i.e. z1 = 

z2 for some 

z2∈ G1(v0, y,−)  

 i.e. z ∈ ∪ {B(z2, d(z2, v0)), z2∈ G1(v0, y,−)}. Therefore, 

(1) K(v0, x) ⊆ K(v0, y) 

Let z ∈ K(v0, y)then z ∈ B(z2, d(z2, v0)) for some  z2∈ G1(v0, 

y,−).  

If z2∈G1(v0, x,−) then z ∈ K(v0, x) and so K(v0, y) ⊆ K(v0, x).  

If z2∈ G[y, x],  

consider z ′ ∈G1(v0, x,−). 

Then 

d(z, z′) ≤ d(z, z2) + d(z2, z′) 
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           ≤ d(z2, v0) + d(z2, z′) 

           = d(z′, v0). 

Therefore z ∈ B(z′, d(z′, v0)) and so  

z ∈ K(v0, x). 

 Consequently 

(2) K(v0, y) ⊆ K(v0, x). 

(1) and (2) imply K(v0, x) = K(v0, y). 

        The following theorem shows that we may assume in the 

definition of lunar point that x has v0 as a best approximation 

from V. 

D. Theorem  

       Let V be a subset of an M-space (X, d) and v0∈ V . Then 

the following are equivalent: v0 is a lunar point whenever v0 is 

a best approximation to x with K(v0, x)∩V ≠ ∅ then 

v0∈K(v0, x) ∩ V                  . 

Proof 

⇒(ii) is trivial.  

⇒(i).  

Let x ∈X and K(v0, x) ∩ V ≠∅.  

To show v0∈ K(v0, x) ∩ V                   .  

If v0 is a best approximation to x then by (ii), 

v0∈ K(v0, x) ∩ V                  .  

If v0is not a best approximation to x then two cases arise: 

(a) v0 is not a local best approximation to x, 

(b) v0 is a local best approximation to x. 

Case (a): 

   If v0 is not a local best approximation to x i.e. for all ∈≥ 0 

there exists vϵ∈ V  

Such that d(vϵ, v0) ≤ ∈and d(vϵ, x) ≤ d(v0, x).  

  Then vϵ∈ B(x, d(v0, x)) ⊂ K(v0, x).  

  Therefore every neighbourhood of v0 contains an element vϵ 

of K(v0, x) ∩ V  

other than v0 i.e. v0 is a limit point of      K(v0, x) ∩ V and so 

v0∈ K(v0, x) ∩ V                  . 

        Hence v0 is a lunar point. 

Case (b): 

    If v0 is a local best approximation to x  

    i.e. v0 is a best approximation to x from  

V ∩ B(v0, ϵ) for some ∈≥ 0.  

    Let z ∈ G[v0, x] such that d(z, v0) ≤ 
∈

2
 

then by Lemma c K(v0, z) = K(v0, x) and v0 is a best 

approximation to z from V.  

So (ii) implies 

v0∈  K(v0, z) ∩ V                  =  K(v0, x) ∩ V                   and  

therefore v0 is a lunar point. 

E. Corollary  

    Every sun in an M-space is a moon. 

Proof 

Let V be a sun.  

Suppose V is not a moon 

 i.e. there exists v0∈ V which is not a lunar point  

 i.e. v0 is a best approximation to x ∈ X with K(v0, x)∩V ≠ ∅ 

 but v0∉ K(v0, x) ∩ V                   . 

 As V is a sun, Theorem b implies          K(v0, x)∩V = ∅ 

 whenever v0 is a best approximation to       x ∈ X. 

 Since these two statements are contradictory, the result 

follows. 

CONCLUSION 

 In this paper discussed about the sun and moon in M-

Spaces and characterized these via best approximation thereby 

extending corresponding known results in normed linear 

spaces to M-spaces. That is the sun and moon concepts in M-

spaces also called strongly convex spaces and extended some 

of the results proved in normed linesr spaces by Amir and 

Deutch (1972) and Mhaskar and pai (2000) to M-spaces 
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