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Abstract— In this paper we consider several types of 

differential equations and discuss the maximum principle for 

them. In general, the maximum principle tells us that the 

maximum value of the function, which is a solution of a 

differential equation, is attained at the boundary of the region. 

In this paper, we deal with elliptic equations. The most 

important and easy equation is the Laplace equation. The 

homogeneous version of Laplace’s equation is Δu = 0. It is 

often written with minus sign since the (delta‐operator) with 

this sign becomes strict monotone operator in the operator 

theory, which means that it has a unique solution. The non-

homogeneous version of Laplace’s equation Δu = f is 

called Poisson’s equation. It is convenient to include a minus 

sign here because Δ is a negative definite operator. The 

Laplace and Poisson equations, and their generalizations, arise 

in many different contexts. 
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I. INTRODUCTION 

The Laplace and Poisson equations, and their generalizations, 

arise in many different contexts. 

1. Potential theory e.g. in the Newtonian theory of 

gravity, electrostatics, heat flow, and potential flows 

in fluid mechanics. 

2. Riemannian geometry e.g. the Laplace-Beltrami 

operator. 

3. Stochastic processes e.g. the stationary Kolmogorov 

equation for Brownian motion. 

4. Complex analysis e.g. the real and imaginary parts of 

an analytic function of a single complex variable are 

harmonic. 

The classical Dirichlet problem for Poisson's equation: If D is 

a bounded domain in R
n 

for n > 1, then it is to find a function 

“u” such that 

 

And 

 

 

In sections one and we for ordinary differential equation (one 

dimensional equation), and we study the maximum principle 

in various differential inequalities.  

 In sections two and three and four we discuss the maximum 

principle for multidimensional equations. In specific we 

consider the Laplace operator. We consider also second order 

elliptic operators transformations. 

II. THE MAXIMUM PRINCIPLE 

A function u (x) that is continuous on the closed interval 

 takes on its maximum at a point on this interval. If u 

(x) has a continuous second derivative, and if u has a relative 

maximum at some point c between a and b, then we know 

form elementary calculus that  

   and      (1.1)                                                                                                                                                                                                             

Suppose that in an open interval (a, b), u is known to satisfy a 

differential inequality  

     (1.2)                                                                            

where g (x) is any bounded function. Then it is clear that 

relation (1.1) cannot be satisfied at any point c in (a, b) 

Consequently, whenever (1.2) holds, the maximum of u in the 

interval cannot be attained anywhere except at the end points a 

or b. We have here the simplest case of a maximum principle. 

An essential feature of the above argument is the requirement 

that the inequality (1.2) be strict; that is, we assume that 

 is never zero. In the study of differential 

equations and in many applications, such a requirement is 

overly restrictive, and it is important that we remove it if 

possible. We note, however, that for the nonstrict inequality  

 the solution u = constant is admitted. 

For a constant solution the maximum is attained at every 

point. We shall prove that this exception is the only one 

possible. 

III. MAXIMIM PRINCIPLE FOR ELLIPTIC EQUATIONS 

A. The Leplace Operator[6] 

Let , …,  be atwice continuously differentiable 

function defined in a domain  in -dimensional Euclidean 

space. The Laplace operator or Laplacian  is defined as 

 

If the equation  is satisfied at each point of a domain 

, we say that  is a harmonic function. Suppose that  has a 

local maximum at an interior point of . Then we know that  

 

and 



Special Issue Published in International Journal of Trend in Research and Development (IJTRD), 

ISSN: 2394-9333, www.ijtrd.com 

 

 

 

Proceedings of International Conference on Arts, Science & Technology, Dubai, 20-22 December 2017 

 
Page 43 

 

Therefore, at a local maximum, the inequality 

 

Must hold. If a function  satisfies the strict inequality , 

at each point of a domain , then  cannot attain its maximum at 

any interior point of . Suppose 

 are 

any bounded functions defined in D. Without any change in the 

argument above, we conclude that if u satisfies the strict 

inequality 

 

in , then  cannot attain its maximum at an interior point. 

 

B. Second order elliptic operators transformations [6] 

We shall be concerned with second order differential operators of 

the form  

Since , we may define  

 

and write the above differential expression as 

 

In other words, there is no loss of generality in supposing that the 

coefficients of the second-order operator ℒ are symmetric. 

The operator 

 is 

called elliptic at a point , …,  if and only if there 

is a positive quantity  such that  

 

For all -tuples of real numbers The operator  is 

said to be elliptic in a domain  if it is elliptic at each point of  . 
It is uniformly elliptic in  if  

holds for each point of  and if there is a positive constant  

such that  for all  in .  

C. The Maximum principle of E.HOPF[6] 

Consider the strict differential inequality  

 

In a domain , and assume that  is elliptic in . If  has a 

relative maximum at a point  we know 

from the calculus of several variable that at   

 
For any coordinates  obtained from the 

coordinates  by a linear transformation. In 

particular, if , the principal part of , is the Laplace operator in 

-coordinates, then  

 
cannot hold at  . Whenever  is elliptic, we can find a linear 

transformation of coordinates so that at  the operator ℒ becomes 

the Laplace operator. We conclude that if  is elliptic, a function 

 which satisfies  in a domain  cannot have a 

maximum in . As in the one-dimensional case, we shall extend 

the maximum principle to include the possibility that  

satisfies an inequality which may not be strict. 

THEOREM 2.1. Let  satisfy the differential 

inequality 

 
in a domain  where  is uniformly elliptic. Suppose the 

coefficients  and  are uniformly bounded. If  attains 

maximum  at a point of D, then  in D.
 

THEOREM 2.2. Let  satisfy the differential inequality 

 
With , with  uniformly elliptic in , and with the 

coefficients of  and  bounded. If attains a nonnegative 

maximum  at an interior point of , then . 

 

Remark 2.1:  

 

The restriction is essential, as a counterexample for if 

. 

Example2.1[3]: The function  has an absolute 

maximum at and is a solution of the equation  

 in  dimensions. 

Let  satisfy in a domain with a smooth boundary 

We know that if  takes on a maximum at all it must do 

so at a boundary point. We shall now suppose that  is 

continuous and bounded on and that there is a point  

on  at which  takes on its maximum value. If  is 

bounded, such a point  will always exist. First of all, we 

observe that the directional derivative of at  taken in any 

direction on the boundary that points outward from  cannot 

be negative. If it were, the function  would start increasing as 

we enter the domain  at , and so the maximum could not 

occur at . Let  be the unit normal 

vector in an outward direction at a point  on the boundary of 

. We say that the vector points 

outward from  at the boundary point  if 

 
We define the directional derivative of at the boundary point 

 in the direction  as 

 

if it exists. The directional derivative is said to be outward if  

points outward from . Then, if  has a maximum at , we 

have at . We shall now show that unless  is 

constant, the strict inequality  holds at .  

THEOREM 2.3. Let u satisfy the inequality 
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in a domain  in which  is uniformly elliptic. Suppose that 

in  and that at a boundary point . Assume 

that  lies on the boundary of a ball  in . If  is 

continuous in  and an outward directional derivative 

 exists at , then 

at  

unless . 

Proof: By shrinking  slightly if necessary, we may assume 

that  lies entirely in construct a ball  with center 

at  and radius  where  is the radius of . We illustrate 

this figure below. We define the function  again as 

 
 

selecting  so large that  in . The function 

 
 

is now formed. According to Theorem (2. 1), if , then 

 in , and on its boundary except at the point  We 

recall that  on the boundary of . We select  so 

small that  on the portion of theboundary of ,  lying 

in . Then  on the entire boundary of the shaded 

region shown in the figure above. Because  in this 

region, the maximum of  occurs at  and . 

Therefore, at  

 
We shall now show that  at , so that  

at . Selecting  as the origin of our coordinate system and 

letting  represent Euclidean distance from  we have 

 
Then 

 
and 

 
Hence 

 
Therefore , establishing the conclusion of the 

theorem. 

THEOREM 2.4. Let  satisfy the inequality 

 
and   in . Suppose that  in , that  at a 

boundary point , and that  Assume that  lies on the 

boundary of a ball in . If  is continuous in , any 

outward directional derivative of  at  is positive unless 

 in . 

Proof: The proof of this Theorem follows exactly the same 

lines as that of Theorem (2.3) when  and . 

This time choose  so large that  in . (this 

was shown to be possible in the previous Theorem). 

Proceed as before to define  and suitably and conclude 

again that at ,  

 
Defining  and  as before, we again conclude that 

 
Finally, we again note that  , and conclude that  

 

As before. Again, this shows that , which proves the 

theorem. 

Example 2.1. A solution of  

 
In a domain  cannot attain a maximum in  unless 

. Because 

 
Reduces to  

 
Now suppose that u attains a non-zero maximum in . By 

basic calculus,  at a local maximum. But  non-zero 

gives , and the above equation then forces , 

which is a contradiction. Now suppose that u attains a 

maximum at some point . Hence  is 

constant, and since , we have . 

Example 2.2. Show that  

 
in the domain  with 

  for  

has no solution other than . 

Solution: Suppose that  at some point in . Then 

 and hence  since 

. Since  is continuous, each point at which 

 lies in an open ball contained entirely in , and such 

that  at each point in . Hence for each  in 

, the above equations hold in an open connected subset of  

( a domain). We consider the largest possible such domain in 

each case. Then by Theorem (2. 1), since  on  and by 

continuity on the boundary of each of the domains described 

above,  on each of these domains. Hence there are no 

points at which  is strictly positive. 

      Suppose now that  Then  and hence  

for the same reasons as before. We again construct the 

relevant domains (this time the domains in which ). 

Applying Theorem (2. 1) to , we see as above that 

 on each of the described domains. Hence there are 

no points at which  is strictly negative. 
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IV THE GENERALIZED MAXIMUM PRINCIPLE 

 

The condition  in Theorem (2. 4) cannot be removed 

entirely. As in Chapter 1, the methods used to prove a 

maximum principle with  can be extended to establish a 

generalized maximum principle.  

Theorem 3.1[6]: Let  satisfy the differential inequality  

 

In a domain  where  is uniformly elliptic. If there exists a 

function  such that  

 on  

 in  

Then   cannot attain a nonnegative maximum in  

unless it is a constant. If  attains its nonnegative 

maximum at a point  on  which lies on the boundary of a 

ball in  and if  is not constant, then 

 at , 

Where  is any outward directional derivative. 

Proof: We now give a specific method for determining a 

function  having properties  on  and 

 in , provided the domain  is contained in a 

sufficiently narrow slab bounded by two parallel hyper planes. 

Suppose that the bounded domain  is contained in a slab 

 where  is the first coordinate of 

 ; we set 

. 

Where  and are to be determined. A computation shows 

that 

. 

By the uniform ellipticity hypothesis,  

We suppose that is bounded and that  is bounded 

from below; that is, 

  

where  and  are nonnegative. We choose  so large that 

 
Then we select 

 
Under these circumstances, 

 
However, to insure that  on , we must have 

 
That is, the inequality 

 
must be satisfied. We are still free to increase the size of  if 

we wish.We may choose so that the right side of the last 

inequality is a maximum. Notice that the right side becomes 

larger as  becomes smaller. Also, last inequality 

becomes less restrictive as M, the maximum of  

becomessmaller.  

Let be positive on ,  and define 

. 

Then computing  we see that  

 

 

 

 
Dividing through by  gives  

 
According to the properties of  we conclude that the 

maximum principle as in the previous theorems holds for 

. 

 

V. APPLICATIONS OF THE MAXIMUM PRINCIPLE 

 

A The P – Method[1] 

We now deal with a possible application of the maximum 

principle, namely the P function method. The method consists 

of determining a function  

,...),,( uuxPP   

satisfying a maximum principle, i.e., nnnb 

 
where  is a solution of the studied equation (boundary value 

problem). 

    We start with a simple example.  We consider the one-

dimensional equation 

 in  

and multiply it by  and then integrating it we get that 

 
Hence, we can define the function 

P 1= ( u ')
2
 + 4 u  

satisfying a maximum principle, i. e. The function P1 takes its 

maximum value either at a critical point of  or at some point 

on the boundary, unless it is a constant. This function P1 is the 

one-dimensional version of  

P 1= (| u |)
2
 + 4 u . 

 

This function is related to the torsion problem (the St.-Venant 

problem): 

 
The proof follows from the differential inequality 

 
and the maximum principle. 

Similarly, the function 

P 2= (| u |)
2
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attains its maximum on the boundary. We can actually prove 

the following result: The function 

P 3= (| u |)
2
 + 

n

4
u  

takes its maximum value at some point on the boundary, 

unless P 3 is a constant. Moreover,  P 3 is identically constant 

in  if and only if  is a dimensional ball. 
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