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Abstract—This brief presents a parallel single-rail self-timed 

adder. It is based on a recursive formulation for performing 

multibit binary addition. The operation is parallel for those bits 

that do not need any carry chain propagation. Thus, the design 

attains logarithmic performance over random operand 

conditions without any special speedup circuitry or look-ahead 

schema. A practical implementation is provided along with a 

completion detection unit. The implementation is regular and 

does not have any practical limitations of high fan-out. A high 

fan-in gate is required though but this is unavoidable for 

asynchronous logic and is managed by connecting the transistors 

in parallel. Simulations have been performed using an industry 

standard toolkit that verifies the practicality and superiority of 

the proposed approach over existing asynchronous adders. 

Keywords— Asynchronous circuits, binary adders, CMOS 

design,digital arithmetic. 

I.  INTRODUCTION  

A majority of the present-day digital systems are clock 
based or synchronous, which assume that signals are binary 
and time is discrete. In general, synchronous systems comprise 
a number of subsystems that change from one state to another 
depending on a global clock signal, with flip-flops (registers) 
being used to store the different states of the subsystems. The 
state updates within the registers are carried out on the rising 
edge (positive edge) or falling edge (negative edge) of the 
global clock – single edge triggering. The state of the global 
clock permits either data loading or data storage. Since the 
overall clock utilization is only 50% for single edge triggered 
systems, double edge triggered flip-flops were subsequently 
proposed in the literature with the motive of increasing the 
system throughput as data can be loaded on both the rising and 
falling clock edges and data is retained when the clock signal 
does not toggle. However, this usually comes at the expense of 
a larger silicon footprint due to greater number of transistors 
and more interconnects for the dual edge triggered flip-flop 
and consequently leads to more power consumption. 
Preserving the original data rate as that of single edge 
triggered flip-flop designs whilst operating at half the system 
clock frequency might be helpful in reducing the dynamic 
power dissipation as the transitions could be reduced by half, 
but eventually this may be offset by more leakage power 
dissipation which is becoming dominant in deep submicron 

technologies. Moreover, this mechanism tends to forego the 
advantages associated with single edge triggering in that its 
set-up and hold times are larger compared to conventional 
flip-flops and any deviation from its 50% duty cycle can lead 
to timing failures in critical paths upsetting the system 
behavior. 

II. RELATED WORKS 

 Based on the research undertaken on self-timed 
combinational logic realization and especially with respect to 
data path elements, the original contributions of this thesis are 
summarized as follows. Formulation of speed-independent 
decomposition rules using set-theoretic principles. General 
multi-level synthesis models to realize strong or weak-
indication combinational logic, which consider the entire input 
space. 

A set theory based heuristic for compactly synthesizing 
combinational logic of arbitrary size as self-timed circuits and 
a system configuration in support of the proposed heuristic. 
Design of self-timed carry-ripple adders which feature local or 
global indication property and proposition of the concept of 
logic redundancy insertion for delay reduction. 

Self-timed section carry based carry-look ahead 
architectures that greatly minimize the latency of dual-operand 
addition in comparison with the ripple carry topology. A 
combinational bit-partitioning strategy addressing self-timed 
multi-operand addition and the design of a self-timed logic 
compressor. Integer addition is one of the most important 
operations in digital computer systems. In addition to explicit 
arithmetic (such as addition, subtraction, multiplication, and 
division) performed in a program, additions are performed to 
increment program counters and calculate effective addresses. 
Statistics presented that, in a prototypical RISC machine 
(DLX), 72 percent of the instructions perform additions (or 
subtractions) in the data path. 

The statistics reported in ARM processors even reaches 80 
percent. Thus, the performance of processors is significantly 
influenced by the speed of their adders. Circuits may be 
classified as synchronous or asynchronous. Synchronous 
circuits have a clock to synchronize the operations of 
subsystems, while asynchronous circuits do not. Subsystems 
in asynchronous circuits usually need start and completion 
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mechanisms to synchronize with one another. One advantage 
of using asynchronous circuits is that these circuits operate at 
average rates, while synchronous circuits are required to 
operate at the worst rates. A good example for this is that n-bit 
ripple-carry adders have worst case computation time whereas 
n-bit carry-completion sensing adders have average 
computation time. With successful nanometer scale IC designs 
getting rolled out from semiconductor in huge volumes every 
year, and with the continuous venture intodeeper nano scale 
device geometries, the semiconductor industry is 
contemplating several options to push the limits of 
conventional digital IC design in terms of devices, dielectric 
materials, interconnects, foundry processes, fabrication 
methods, testing techniques, and manufacturing and packaging 
technologies. 

Given the aggressive technological trend fuelled by an 
ever-increasing market demand for mobile and portable 
electronic products, the Semiconductor Industry Association‟s 
2011 International Technology Roadmap on Semiconductors 
(ITRS) report has identified „design for reliability‟ as one of 
the long-term grand challenges. Indeed, taking cognizance of 
decreasing feature sizes and associated increases in variability 
of devices, the ITRS report mentions that the issue of 
„reliability‟ could assume comparable significance with 
quality-of-results in the nanometer regime. 

In this context, the self-timed design paradigm is pegged to 
be a strong contender and a viable alternative to mainstream 
synchronous design style for implementing digital logic 
functionality such as arithmetic and logic units, circuits used 
in telecommunications, defense and security applications, and 
subsystems deployed in a wide range of industrial and 
consumer electronics. The primary motivation for adopting the 
self-timed design style arises from the fact that self-timed 
circuits consume power only when and where active, absorb 
process, temperature and parametric variations with ease, 
feature greater modularity, and inherently possess good noise 
and EMI tolerance capabilities. 

Dynamic circuit techniques offer potential advantages over 
static CMOS. Domino circuits are the most widespread 
representative in high performance designs but suffer 
increasingly from deep submicron effects. This paper presents 
evaluations in terms of area, power dissipation, and 
propagation delay for static CMOS as well as for several 
Domino derivatives in a 90 nm technology. Finally, issues of 
reliability gained from practical experience for different test 
benches are discussed. 

Integer addition is one of the most important operations in 
digital computer systems because the performance of 
processors is significantly influenced by the speed of their 
adders. This paper proposes a self-timed carry-look ahead 
adder in which the logic complexity is a linear function of n, 
the number of inputs, and the average computation time is 
proportional to the logarithm of the logarithm of n. To the best 
of our knowledge, our adder has the best area-time efficiency. 
An economic implementation of this adder in CMOS 
technology is also presented. SPICE simulation results show 
that, based on random inputs, our 32-bit self-timed carry-look 
ahead adder is 2.39 and 1.42 times faster than its synchronous 

counterpart and self-timed ripple-carry adder, respectively, 
and, based on statistical data gathered from a 32-bit ARM 
simulator, it is 1.99 and 1.83 times faster than its synchronous 
counterpart and self-timed ripple-carry adder, respectively 

III. METHODOLOGY 

There are myriad designs of binary adders and we focus 
here on asynchronous self-timed adders. Self-timed refers to 
logic circuits that depend on and/or engineer timing 
assumptions for the correct operation. Self-timed adders have 
the potential to run faster averaged for dynamic data, as early 
completion sensing can avoid the need for the worst case 
bundled delay mechanism of synchronous circuits. They can 
be further classified as follows. 

A. Pipelined Adders Using Single-Rail Data Encoding 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 
and rms do not have to be defined. Do not use abbreviations in 
the title or heads unless they are unavoidable. 

The asynchronous Req/Ack handshake can be used to 
enable the adder block as well as to establish the flow of carry 
signals. In most of the cases, a dual-rail carry convention is 
used for internal bitwise flow of carry outputs. These dual-rail 
signals can represent more than two logic values (invalid, 0, 
1), and therefore can be used to generate bit-level 
acknowledgment when a bit operation is completed. Final 
completion is sensed when all bit Ack signals are received 
(high). 

The carry-completion sensing adder is an example of a 
pipelined adder, which uses full adder (FA) functional blocks 
adapted for dual-rail carry. On the other hand, a speculative 
completion adder is proposed. It uses so-called abort logic and 
early completion to select the proper completion response 
from a number of fixed delay lines. However, the abort logic 
implementation is expensive due to high fan-in requirements. 

B. Delay Insensitive Adders Using Dual-Rail Encoding 

Delay insensitive (DI) adders are asynchronous adders that 

assert bundling constraints or DI operations. Therefore, they 

can correctly operate in presence of bounded but unknown 

gate and wire delays. 

There are many variants of DI adders, such as DI ripple 

carry adder (DIRCA) and DI carry look-ahead adder 

(DICLA). DI adders use dual-rail encoding and are assumed to 

increase complexity. 

Though dual-rail encoding doubles the wire complexity, 

they can still be used to produce circuits nearly as efficient as 

that of the single-rail variants using dynamic logic or nMOS 

only designs. An example 40 transistors per bit DIRCA adder 

is presented .While the conventional CMOS RCA uses 28 

transistors. 

Similar to CLA, the DICLA defines carry propagate, 

generate, and kill equations in terms of dual-rail encoding. 

They do not connect the carry signals in a chain but rather 
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organize them in a hierarchical tree. Thus, they can potentially 

operate faster when there is long carry chain. 

 

 
Fig.1. General Block Diagram of PASTA. 

 

 
Fig.2. State diagrams for PASTA. (a) Initial phase. (b) Iterative phase. 

 

 

A further optimization is provided from the observation that 

dual rail encoding logic can benefit from settling of either the 

0 or 1 path. Dual-rail logic need not wait for both paths to be 

evaluated. Thus, it is possible to further speed up the carry 

look-ahead circuitry to send carry-generate/carry-kill signals 

to any level in the tree. This is elaborated and referred as 

DICLA with speedup circuitry (DICLASP). 

C.  Architecture Of Pasta 

The general architecture of the adder is shown on above 
diagram. The selection input for two-input multiplexers 
corresponds to the Req handshake signal and will be a single 0 
to 1 transition denoted by SEL. It will initially select the actual 
operands during SEL = 0 and will switch to feedback/carry 
paths for subsequent iterations using SEL = 1. The feedback 
path from the HAs enables the multiple iterations to continue 
until the completion when all carry signals will assume zero 
values. 

D. State Diagrams 

Two state diagrams are drawn for the initial phase and the 
iterative phase of the proposed architecture. Each state is 
represented by (Ci+1 Si) pair where Ci+1, Si represents carry 
out and sum values, respectively, from the ith bit adder block. 
During the initial phase, the circuit merely works as a 
combinational HA operating in fundamental mode. It is 
apparent that due to the use of HAs instead of FAs, state (11) 
cannot appear. During the iterative phase (SEL = 1), the 
feedback path through multiplexer block is activated. The 
carry transitions (Ci ) are allowed as many times as needed to 
complete the recursion. From the definition of fundamental 
mode circuits, the present design cannot be considered as a 
fundamental mode circuit as the input–outputs will go through 
several transitions before producing the final output. It is not a 

Muller circuit working outside the fundamental mode either as 
internally; several transitions will take place, as shown in the 
state diagram. This is analogous to cyclic sequential circuits 
where gate delays are utilized to separate individual states. 

E. Recursive Formula For Binary Addition 

Let S ji and C ji+1 denote the sum and carry, respectively, 
for ith bit at the j th iteration. The initial condition ( j = 0) for 
addition is formulated as follows: 

The j th iteration for the recursive addition is formulated 
by 

The recursion is terminated at kth iteration when the 
following 

Condition is met: 

Now, the correctness of the recursive formulation is 
inductively proved as follows. 

Theorem 1: The recursive formulation will produce correct 
sum for any number of bits and will terminate within a finite 
time. 

Proof: We prove the correctness of the algorithm by 
induction on the required number of iterations for completing 
the addition (meeting the terminating condition). 

Basis: Consider the operand choices for which no carry 
propagation is required, i.e., The proposed formulation will 
produce the correct result by a single-bit computation time and 
terminate instantly as met. 

Induction: Assume that Cki+1_= 0 for some ith bit at kth 
iteration. Let l be such a bit for which Ck l+1 = 1. We show 
that it will be successfully transmitted to next higher bit in the 
(k + 1)th iteration. 

As shown in the state diagram, the kth iteration of Ith bit 
state (Ckl+1, Skl ) and (l + 1)th bit state (Ck l+2, Sk l+1) 
could be in any of (0, 0), (0, 1), or (1, 0) states. As Ck l+1 = 1, 
it implies that Skl = 0. Hence, Ck+1 l+1 = 0 for any input 
condition between 0 to l bits. 

We now consider the (l + 1)th bit state (Ckl+2, Skl+1) for 
kth iteration. It could also be in any of (0, 0), (0, 1), or (1, 0) 
states. In (k+1)th iteration, the (0, 0) and (1, 0) states from the 
kth iteration will correctly produce output. For (0, 1) state, the 
carry successfully propagates through this bit level following. 

Thus, all the single-bit adders will successfully kill or 
propagate the carries until all carries are zero fulfilling the 
terminating condition. 

The mathematical form presented above is valid under the 
condition that the iterations progress synchronously for all bit 
levels and the required input and outputs for a specific 
iteration will also be in synchrony with the progress of one 
iteration. In the next section, we present an implementation of 
the proposed architecture which is subsequently verified using 
simulations. 
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F. CMOS 

A CMOS implementation for the recursive circuit is shown 
on below diagram. For multiplexers and AND gates we have 
used TSMC library implementations while for the XOR gate 
we have used the faster ten transistor implementation based on 
transmission gate XOR to match the delay with AND gates. 

 

Fig 3. Single-bit sum module 

 

Fig 4. 2×1 MUX for the 1 bit adder 

The completion detection following is negated to obtain an 
active high completion signal (TERM). This requires a large 
fan-in n-input NOR gate. Therefore, an alternative more 
practical pseudo-nMOS ratioed design is used. Using the 
pseudo-nMOS design, the completion unit avoids the high fan-
in problem as all the connections are parallel. 

 

Fig 5. Single-bit carry module 

 

Fig 6. Completion signal detection circuit 

The pMOS transistor connected to VDD of this ratioed 
design acts as a load register, resulting in static current drain 
when some of the nMOS transistors are on simultaneously. In 
addition to the Ci s, the negative of SEL signal is also included 
for the signal to ensure that the completion cannot be 
accidentally turned on during the initial selection phase of the 
actual inputs. It also prevents the pMOS pull up transistor 
from being always on. Hence, static current will only be 
flowing for the duration of the actual computation. 

 

Fig .7 VLSI layout 

VLSI layout has also been performed for a standard cell 
environment using two metal layers. The layout occupies 270 
_ × 130 _ for 1-bit resulting in 1.123 M_2 area for 32-bit. The 
pull down transistors of the completion detection logic are 
included in the single-bit layout (the T terminal) while the 
pull-up transistor is additionally placed for the full 32-bit 
adder. It is nearly double the area required for RCA and is a 
little less than the most of the area efficient prefix tree adder, 
i.e., the worst and average cases corresponding to maximum 
and average length carry chain propagation over random input 
values are highlighted. 

The carry propagates through successive bit adders like a 
pulse as evident. The best-case corresponding to minimum 
length carry chain does not involve any carry propagation, and 
hence incurs only a single-bit adder delay before producing 
the TERM signal. The worst-case involves maximum carry 
propagation cascaded delay due to the carry chain length of 
full 32 bit. This circuit works correctly for all process corners. 
This has no effects in the circuit and errors induced by the SF 
extreme corner case. 

The delay performances of different adders we have used 
1000 uniformly distributed random operands to represent the 
average case while best case, worst case correspond to specific 
test-cases representing zero, 32-bit carry propagation chains 
respectively. The delay for combinational adders is measured 
at 70% transition point for the result bit that experiences the 
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maximum delay. For self-timed adders, it is measured by the 
delay between SEL and TERM signals, as depicted. The 
combinational adders, such as RCA/B-CLA/BKA/ Kogge–
Stone adder (KSA)/Sklansky‟s conditional sum adder (SCSA) 
can only work for the worst-case delay as they do not have 
any completion sensing mechanism. 

Therefore, these results give an empirical upper bound of 
the performance enhancement that can be achieved using these 
adders as the basic unit and employing some kind of 
completion sensing technique In the worst case, KSA 
performs best as they (along with SCSA) have the minimal 
tree-depth. On the other hand, PASTA performs best among 
the self-timed adders. PASTA performance is comparable 
with the best case performances of conventional adders. 
Effectively, it varies between one and four times that of the 
best adder performances. Therefore, the best case delay 
represents the delay required to generate the TERM signal 
only and of the order of picoseconds. 

Similar overhead is also present in dual-rail logic circuits 
where they have to be reset to the invalid state prior to any 
computation. The dynamic/nMOS only designs require a 
precharge phase to be completed during this interval. These 
overheads are not included in this comparison. The best case 
and worst case carry performances of DIRCA for the chosen 
operands are nearly the same, as one rail needs to be set from 
start to end? In contrast, the average cases can have carry 
generation and killing in any bit and thus providing a better 
case for DIRCA. 

Another interesting observation is that the performances of 
the combinational adders and PASTA improve with the 
decreasing process width and VDD values while the 
performance of dual-rail adders decreases with scaling down 
of the technology. This results from the fact that dynamic 
logic requires technology specific energy delay optimization 
as performed. We also note that the dynamic logic switching 
speed advantage can be attributed to the nMOS threshold 
voltage being lower than a static CMOS threshold voltage 
(VDD/2), which diminishes with decreasing process width. 
The PASTA layout complies with all design rules for the 
TSMC 0.35 μm process and this was found to increase the 
delay by two to three times after taking into consideration 
layout specific parasitic capacitances. 

IV. RESULT AND DISCUSSION 

In this paper, we present simulation results for different 
adders using Modelsim Altera running on Windows platform. 
For implementation of other adders, we have used standard 
library implementations of the basic gates. The custom adders 
such as DIRCA/DICLASP are implemented based on their 
most efficient designs. 

A. Synthesis Report Of Parallel Self-Timed Adder 

 

 

Fig: 8. synthesis of parallel self-timed adder 

B. Schematic View Of Pasta 

 

Fig: 9 View of technology schematic 

Conclusion 

This brief presents an efficient implementation of PASTA. 
Initially, the theoretical foundation for a single-rail wave-
pipelined adder is established. Subsequently, the architectural 
design and CMOS implementations are presented. The design 
achieves a very simple n-bit adder that is area and 
interconnection-wise equivalent to the simplest adder namely 
the RCA. Moreover, the circuit works in a parallel manner for 
independent carry chains, and thus achieves logarithmic 
average time performance over random input values. The 
completion detection unit for the proposed adder is also 
practical and efficient. Simulation results are used to verify the 
advantages of the proposed approach. 
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