
International Journal of Trend in Research and Development, Volume 2(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar-Apr 2015

Available Online@www.ijtrd.com 1

Self-Repetative Approach to the Design of a

Parallel Self-Timed Adder

Reshma K. P.

PG Student,

Department of ECE,

Thanthai Periyar Government Institute of Technology

Vellore, India.

Vijaya J

Assitant Professor,

Department of ECE,

Thanthai Periyar Government Institute of Technology

Vellore,India.

Abstract—This brief presents a parallel single-rail self-timed

adder. It is based on a recursive formulation for performing

multibit binary addition. The operation is parallel for those bits

that do not need any carry chain propagation. Thus, the design

attains logarithmic performance over random operand

conditions without any special speedup circuitry or look-ahead

schema. A practical implementation is provided along with a

completion detection unit. The implementation is regular and

does not have any practical limitations of high fan-out. A high

fan-in gate is required though but this is unavoidable for

asynchronous logic and is managed by connecting the transistors

in parallel. Simulations have been performed using an industry

standard toolkit that verifies the practicality and superiority of

the proposed approach over existing asynchronous adders.

Keywords— Asynchronous circuits, binary adders, CMOS

design,digital arithmetic.

I. INTRODUCTION

A majority of the present-day digital systems are clock
based or synchronous, which assume that signals are binary
and time is discrete. In general, synchronous systems comprise
a number of subsystems that change from one state to another
depending on a global clock signal, with flip-flops (registers)
being used to store the different states of the subsystems. The
state updates within the registers are carried out on the rising
edge (positive edge) or falling edge (negative edge) of the
global clock – single edge triggering. The state of the global
clock permits either data loading or data storage. Since the
overall clock utilization is only 50% for single edge triggered
systems, double edge triggered flip-flops were subsequently
proposed in the literature with the motive of increasing the
system throughput as data can be loaded on both the rising and
falling clock edges and data is retained when the clock signal
does not toggle. However, this usually comes at the expense of
a larger silicon footprint due to greater number of transistors
and more interconnects for the dual edge triggered flip-flop
and consequently leads to more power consumption.
Preserving the original data rate as that of single edge
triggered flip-flop designs whilst operating at half the system
clock frequency might be helpful in reducing the dynamic
power dissipation as the transitions could be reduced by half,
but eventually this may be offset by more leakage power
dissipation which is becoming dominant in deep submicron

technologies. Moreover, this mechanism tends to forego the
advantages associated with single edge triggering in that its
set-up and hold times are larger compared to conventional
flip-flops and any deviation from its 50% duty cycle can lead
to timing failures in critical paths upsetting the system
behavior.

II. RELATED WORKS

 Based on the research undertaken on self-timed
combinational logic realization and especially with respect to
data path elements, the original contributions of this thesis are
summarized as follows. Formulation of speed-independent
decomposition rules using set-theoretic principles. General
multi-level synthesis models to realize strong or weak-
indication combinational logic, which consider the entire input
space.

A set theory based heuristic for compactly synthesizing
combinational logic of arbitrary size as self-timed circuits and
a system configuration in support of the proposed heuristic.
Design of self-timed carry-ripple adders which feature local or
global indication property and proposition of the concept of
logic redundancy insertion for delay reduction.

Self-timed section carry based carry-look ahead
architectures that greatly minimize the latency of dual-operand
addition in comparison with the ripple carry topology. A
combinational bit-partitioning strategy addressing self-timed
multi-operand addition and the design of a self-timed logic
compressor. Integer addition is one of the most important
operations in digital computer systems. In addition to explicit
arithmetic (such as addition, subtraction, multiplication, and
division) performed in a program, additions are performed to
increment program counters and calculate effective addresses.
Statistics presented that, in a prototypical RISC machine
(DLX), 72 percent of the instructions perform additions (or
subtractions) in the data path.

The statistics reported in ARM processors even reaches 80
percent. Thus, the performance of processors is significantly
influenced by the speed of their adders. Circuits may be
classified as synchronous or asynchronous. Synchronous
circuits have a clock to synchronize the operations of
subsystems, while asynchronous circuits do not. Subsystems
in asynchronous circuits usually need start and completion

International Journal of Trend in Research and Development, Volume 2(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar-Apr 2015

Available Online@www.ijtrd.com 2

mechanisms to synchronize with one another. One advantage
of using asynchronous circuits is that these circuits operate at
average rates, while synchronous circuits are required to
operate at the worst rates. A good example for this is that n-bit
ripple-carry adders have worst case computation time whereas
n-bit carry-completion sensing adders have average
computation time. With successful nanometer scale IC designs
getting rolled out from semiconductor in huge volumes every
year, and with the continuous venture intodeeper nano scale
device geometries, the semiconductor industry is
contemplating several options to push the limits of
conventional digital IC design in terms of devices, dielectric
materials, interconnects, foundry processes, fabrication
methods, testing techniques, and manufacturing and packaging
technologies.

Given the aggressive technological trend fuelled by an
ever-increasing market demand for mobile and portable
electronic products, the Semiconductor Industry Association‟s
2011 International Technology Roadmap on Semiconductors
(ITRS) report has identified „design for reliability‟ as one of
the long-term grand challenges. Indeed, taking cognizance of
decreasing feature sizes and associated increases in variability
of devices, the ITRS report mentions that the issue of
„reliability‟ could assume comparable significance with
quality-of-results in the nanometer regime.

In this context, the self-timed design paradigm is pegged to
be a strong contender and a viable alternative to mainstream
synchronous design style for implementing digital logic
functionality such as arithmetic and logic units, circuits used
in telecommunications, defense and security applications, and
subsystems deployed in a wide range of industrial and
consumer electronics. The primary motivation for adopting the
self-timed design style arises from the fact that self-timed
circuits consume power only when and where active, absorb
process, temperature and parametric variations with ease,
feature greater modularity, and inherently possess good noise
and EMI tolerance capabilities.

Dynamic circuit techniques offer potential advantages over
static CMOS. Domino circuits are the most widespread
representative in high performance designs but suffer
increasingly from deep submicron effects. This paper presents
evaluations in terms of area, power dissipation, and
propagation delay for static CMOS as well as for several
Domino derivatives in a 90 nm technology. Finally, issues of
reliability gained from practical experience for different test
benches are discussed.

Integer addition is one of the most important operations in
digital computer systems because the performance of
processors is significantly influenced by the speed of their
adders. This paper proposes a self-timed carry-look ahead
adder in which the logic complexity is a linear function of n,
the number of inputs, and the average computation time is
proportional to the logarithm of the logarithm of n. To the best
of our knowledge, our adder has the best area-time efficiency.
An economic implementation of this adder in CMOS
technology is also presented. SPICE simulation results show
that, based on random inputs, our 32-bit self-timed carry-look
ahead adder is 2.39 and 1.42 times faster than its synchronous

counterpart and self-timed ripple-carry adder, respectively,
and, based on statistical data gathered from a 32-bit ARM
simulator, it is 1.99 and 1.83 times faster than its synchronous
counterpart and self-timed ripple-carry adder, respectively

III. METHODOLOGY

There are myriad designs of binary adders and we focus
here on asynchronous self-timed adders. Self-timed refers to
logic circuits that depend on and/or engineer timing
assumptions for the correct operation. Self-timed adders have
the potential to run faster averaged for dynamic data, as early
completion sensing can avoid the need for the worst case
bundled delay mechanism of synchronous circuits. They can
be further classified as follows.

A. Pipelined Adders Using Single-Rail Data Encoding

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
and rms do not have to be defined. Do not use abbreviations in
the title or heads unless they are unavoidable.

The asynchronous Req/Ack handshake can be used to
enable the adder block as well as to establish the flow of carry
signals. In most of the cases, a dual-rail carry convention is
used for internal bitwise flow of carry outputs. These dual-rail
signals can represent more than two logic values (invalid, 0,
1), and therefore can be used to generate bit-level
acknowledgment when a bit operation is completed. Final
completion is sensed when all bit Ack signals are received
(high).

The carry-completion sensing adder is an example of a
pipelined adder, which uses full adder (FA) functional blocks
adapted for dual-rail carry. On the other hand, a speculative
completion adder is proposed. It uses so-called abort logic and
early completion to select the proper completion response
from a number of fixed delay lines. However, the abort logic
implementation is expensive due to high fan-in requirements.

B. Delay Insensitive Adders Using Dual-Rail Encoding

Delay insensitive (DI) adders are asynchronous adders that

assert bundling constraints or DI operations. Therefore, they

can correctly operate in presence of bounded but unknown

gate and wire delays.

There are many variants of DI adders, such as DI ripple

carry adder (DIRCA) and DI carry look-ahead adder

(DICLA). DI adders use dual-rail encoding and are assumed to

increase complexity.

Though dual-rail encoding doubles the wire complexity,

they can still be used to produce circuits nearly as efficient as

that of the single-rail variants using dynamic logic or nMOS

only designs. An example 40 transistors per bit DIRCA adder

is presented .While the conventional CMOS RCA uses 28

transistors.

Similar to CLA, the DICLA defines carry propagate,

generate, and kill equations in terms of dual-rail encoding.

They do not connect the carry signals in a chain but rather

International Journal of Trend in Research and Development, Volume 2(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar-Apr 2015

Available Online@www.ijtrd.com 3

organize them in a hierarchical tree. Thus, they can potentially

operate faster when there is long carry chain.

Fig.1. General Block Diagram of PASTA.

Fig.2. State diagrams for PASTA. (a) Initial phase. (b) Iterative phase.

A further optimization is provided from the observation that

dual rail encoding logic can benefit from settling of either the

0 or 1 path. Dual-rail logic need not wait for both paths to be

evaluated. Thus, it is possible to further speed up the carry

look-ahead circuitry to send carry-generate/carry-kill signals

to any level in the tree. This is elaborated and referred as

DICLA with speedup circuitry (DICLASP).

C. Architecture Of Pasta

The general architecture of the adder is shown on above
diagram. The selection input for two-input multiplexers
corresponds to the Req handshake signal and will be a single 0
to 1 transition denoted by SEL. It will initially select the actual
operands during SEL = 0 and will switch to feedback/carry
paths for subsequent iterations using SEL = 1. The feedback
path from the HAs enables the multiple iterations to continue
until the completion when all carry signals will assume zero
values.

D. State Diagrams

Two state diagrams are drawn for the initial phase and the
iterative phase of the proposed architecture. Each state is
represented by (Ci+1 Si) pair where Ci+1, Si represents carry
out and sum values, respectively, from the ith bit adder block.
During the initial phase, the circuit merely works as a
combinational HA operating in fundamental mode. It is
apparent that due to the use of HAs instead of FAs, state (11)
cannot appear. During the iterative phase (SEL = 1), the
feedback path through multiplexer block is activated. The
carry transitions (Ci) are allowed as many times as needed to
complete the recursion. From the definition of fundamental
mode circuits, the present design cannot be considered as a
fundamental mode circuit as the input–outputs will go through
several transitions before producing the final output. It is not a

Muller circuit working outside the fundamental mode either as
internally; several transitions will take place, as shown in the
state diagram. This is analogous to cyclic sequential circuits
where gate delays are utilized to separate individual states.

E. Recursive Formula For Binary Addition

Let S ji and C ji+1 denote the sum and carry, respectively,
for ith bit at the j th iteration. The initial condition (j = 0) for
addition is formulated as follows:

The j th iteration for the recursive addition is formulated
by

The recursion is terminated at kth iteration when the
following

Condition is met:

Now, the correctness of the recursive formulation is
inductively proved as follows.

Theorem 1: The recursive formulation will produce correct
sum for any number of bits and will terminate within a finite
time.

Proof: We prove the correctness of the algorithm by
induction on the required number of iterations for completing
the addition (meeting the terminating condition).

Basis: Consider the operand choices for which no carry
propagation is required, i.e., The proposed formulation will
produce the correct result by a single-bit computation time and
terminate instantly as met.

Induction: Assume that Cki+1_= 0 for some ith bit at kth
iteration. Let l be such a bit for which Ck l+1 = 1. We show
that it will be successfully transmitted to next higher bit in the
(k + 1)th iteration.

As shown in the state diagram, the kth iteration of Ith bit
state (Ckl+1, Skl) and (l + 1)th bit state (Ck l+2, Sk l+1)
could be in any of (0, 0), (0, 1), or (1, 0) states. As Ck l+1 = 1,
it implies that Skl = 0. Hence, Ck+1 l+1 = 0 for any input
condition between 0 to l bits.

We now consider the (l + 1)th bit state (Ckl+2, Skl+1) for
kth iteration. It could also be in any of (0, 0), (0, 1), or (1, 0)
states. In (k+1)th iteration, the (0, 0) and (1, 0) states from the
kth iteration will correctly produce output. For (0, 1) state, the
carry successfully propagates through this bit level following.

Thus, all the single-bit adders will successfully kill or
propagate the carries until all carries are zero fulfilling the
terminating condition.

The mathematical form presented above is valid under the
condition that the iterations progress synchronously for all bit
levels and the required input and outputs for a specific
iteration will also be in synchrony with the progress of one
iteration. In the next section, we present an implementation of
the proposed architecture which is subsequently verified using
simulations.

International Journal of Trend in Research and Development, Volume 2(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar-Apr 2015

Available Online@www.ijtrd.com 4

F. CMOS

A CMOS implementation for the recursive circuit is shown
on below diagram. For multiplexers and AND gates we have
used TSMC library implementations while for the XOR gate
we have used the faster ten transistor implementation based on
transmission gate XOR to match the delay with AND gates.

Fig 3. Single-bit sum module

Fig 4. 2×1 MUX for the 1 bit adder

The completion detection following is negated to obtain an
active high completion signal (TERM). This requires a large
fan-in n-input NOR gate. Therefore, an alternative more
practical pseudo-nMOS ratioed design is used. Using the
pseudo-nMOS design, the completion unit avoids the high fan-
in problem as all the connections are parallel.

Fig 5. Single-bit carry module

Fig 6. Completion signal detection circuit

The pMOS transistor connected to VDD of this ratioed
design acts as a load register, resulting in static current drain
when some of the nMOS transistors are on simultaneously. In
addition to the Ci s, the negative of SEL signal is also included
for the signal to ensure that the completion cannot be
accidentally turned on during the initial selection phase of the
actual inputs. It also prevents the pMOS pull up transistor
from being always on. Hence, static current will only be
flowing for the duration of the actual computation.

Fig .7 VLSI layout

VLSI layout has also been performed for a standard cell
environment using two metal layers. The layout occupies 270
_ × 130 _ for 1-bit resulting in 1.123 M_2 area for 32-bit. The
pull down transistors of the completion detection logic are
included in the single-bit layout (the T terminal) while the
pull-up transistor is additionally placed for the full 32-bit
adder. It is nearly double the area required for RCA and is a
little less than the most of the area efficient prefix tree adder,
i.e., the worst and average cases corresponding to maximum
and average length carry chain propagation over random input
values are highlighted.

The carry propagates through successive bit adders like a
pulse as evident. The best-case corresponding to minimum
length carry chain does not involve any carry propagation, and
hence incurs only a single-bit adder delay before producing
the TERM signal. The worst-case involves maximum carry
propagation cascaded delay due to the carry chain length of
full 32 bit. This circuit works correctly for all process corners.
This has no effects in the circuit and errors induced by the SF
extreme corner case.

The delay performances of different adders we have used
1000 uniformly distributed random operands to represent the
average case while best case, worst case correspond to specific
test-cases representing zero, 32-bit carry propagation chains
respectively. The delay for combinational adders is measured
at 70% transition point for the result bit that experiences the

International Journal of Trend in Research and Development, Volume 2(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar-Apr 2015

Available Online@www.ijtrd.com 5

maximum delay. For self-timed adders, it is measured by the
delay between SEL and TERM signals, as depicted. The
combinational adders, such as RCA/B-CLA/BKA/ Kogge–
Stone adder (KSA)/Sklansky‟s conditional sum adder (SCSA)
can only work for the worst-case delay as they do not have
any completion sensing mechanism.

Therefore, these results give an empirical upper bound of
the performance enhancement that can be achieved using these
adders as the basic unit and employing some kind of
completion sensing technique In the worst case, KSA
performs best as they (along with SCSA) have the minimal
tree-depth. On the other hand, PASTA performs best among
the self-timed adders. PASTA performance is comparable
with the best case performances of conventional adders.
Effectively, it varies between one and four times that of the
best adder performances. Therefore, the best case delay
represents the delay required to generate the TERM signal
only and of the order of picoseconds.

Similar overhead is also present in dual-rail logic circuits
where they have to be reset to the invalid state prior to any
computation. The dynamic/nMOS only designs require a
precharge phase to be completed during this interval. These
overheads are not included in this comparison. The best case
and worst case carry performances of DIRCA for the chosen
operands are nearly the same, as one rail needs to be set from
start to end? In contrast, the average cases can have carry
generation and killing in any bit and thus providing a better
case for DIRCA.

Another interesting observation is that the performances of
the combinational adders and PASTA improve with the
decreasing process width and VDD values while the
performance of dual-rail adders decreases with scaling down
of the technology. This results from the fact that dynamic
logic requires technology specific energy delay optimization
as performed. We also note that the dynamic logic switching
speed advantage can be attributed to the nMOS threshold
voltage being lower than a static CMOS threshold voltage
(VDD/2), which diminishes with decreasing process width.
The PASTA layout complies with all design rules for the
TSMC 0.35 μm process and this was found to increase the
delay by two to three times after taking into consideration
layout specific parasitic capacitances.

IV. RESULT AND DISCUSSION

In this paper, we present simulation results for different
adders using Modelsim Altera running on Windows platform.
For implementation of other adders, we have used standard
library implementations of the basic gates. The custom adders
such as DIRCA/DICLASP are implemented based on their
most efficient designs.

A. Synthesis Report Of Parallel Self-Timed Adder

Fig: 8. synthesis of parallel self-timed adder

B. Schematic View Of Pasta

Fig: 9 View of technology schematic

Conclusion

This brief presents an efficient implementation of PASTA.
Initially, the theoretical foundation for a single-rail wave-
pipelined adder is established. Subsequently, the architectural
design and CMOS implementations are presented. The design
achieves a very simple n-bit adder that is area and
interconnection-wise equivalent to the simplest adder namely
the RCA. Moreover, the circuit works in a parallel manner for
independent carry chains, and thus achieves logarithmic
average time performance over random input values. The
completion detection unit for the proposed adder is also
practical and efficient. Simulation results are used to verify the
advantages of the proposed approach.

References
 [1] D. Geer, “Is it time for clock less chips? [Asynchronous processor

chips],” IEEE Comput., vol. 38, no. 3, pp. 18–19, Mar. 2005.

[2] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design.
Boston, MA, USA: Kluwer Academic, 2001.

[3] P. Choudhury, S. Sahoo, and M. Chakraborty, “Implementation of basic

arithmetic operations using cellular automaton,” in Proc. ICIT, 2008, pp. 79–
80.

[4] M. Z. Rahman and L. Kleeman, “A delay matched approach for the design

of asynchronous sequential circuits,” Dept. Comput. Syst. Technol., Univ.
Malaya, Kuala Lumpur, Malaysia, Tech. Rep. 05042013, 2013.

[5] M. D. Riedel, “Cyclic combinational circuits,” Ph.D. dissertation, Dept.

Comput. Sci., California Inst. Technol., Pasadena, CA, USA, May 2004.
[6] R. F. Tinder, Asynchronous Sequential Machine Design and Analysis: A

Comprehensive Development of the Design and Analysis of Clock-

Independent State Machines and Systems. San Mateo, CA, USA: Morgan,
2009.

International Journal of Trend in Research and Development, Volume 2(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar-Apr 2015

Available Online@www.ijtrd.com 6

[7] W. Liu, C. T. Gray, D. Fan, and W. J. Farlow, “A 250-MHz wave

pipelined adder in 2-μm CMOS,” IEEE J. Solid-State Circuits, vol. 29, no. 9,

pp. 1117–1128, Sep. 1994.

[8] F.-C. Cheng, S. H. Unger, and M. Theobald, “Self-timed carry-lookahead

adders,” IEEE Trans. Comput., vol. 49, no. 7, pp. 659–672, Jul. 2000.
[9] S. Nowick, “Design of a low-latency asynchronous adder using

speculative completion,” IEE Proc. Comput. Digital Tech., vol. 143, no. 5, pp.

301–307, Sep. 1996.

