International Journal of Trend in Research and Development, Volume 4(6), ISSN: 2394-9333 www.ijtrd.com

Decomposition of rg*b-Closed Sets in Supra Topological Spaces

¹G. Sindhu and ²K. Indirani, ¹Assistant Professor, ²Associate Professor (Retd), ^{1,2}Department of Mathematics, Nirmala College for Women, Tamil Nadu, India

Abstract — In this paper, we introduce a new class of sets called supra rg^*b -locally closed sets and a new class of maps called supra rg^*b -locally continuous functions. Furthermore, we obtain some of their properties.

Keywords— S-rg*b-LC sets, S-rg*b-LC* sets, S-rg*b-LC** sets, S-rg*b-L-continuous and S-rg*b-L-irresolute.

I. INTRODUCTION

Sindhu et al [8] defined and studied rg^*b -closed sets in Topological spaces. Bourbaki [1] defined a subset of space (X, τ) is called locally closed, if it is the intersection of an open set and a closed set. In topological space, some classes of sets namely generalized locally closed sets were introduced and investigated by Balachandran et al. [2]. Mashhour et al. [6] introduced the supra topological spaces and studied Scontinuous functions and S*-continuous functions. Indirani et al. [3] introduced and studied a class of sets and maps called supra rg^*b -closed sets and supra rg^*b -continuous maps.

In this paper we introduce the concept of supra rg*b locally closed sets and study its basic properties. Also we introduce the concepts of supra rg*b -locally continuous maps and investigate some of its properties.

II. PRELIMINARIES

Throughout this paper, (X, τ) , (Y, σ) and (Z, η) (or simply, X, Y and Z) represent topological space on which no separation axioms are assumed, unless explicitly stated. For a subset A of (X, τ) , cl (A) and int (A) represent the closure of A with respect to τ and the interior of A with respect to τ , respectively. Let P(X) be the power set of X. The complement of A is denoted by X-A or A^c.

Now we recall some Definitions and results which are useful in the sequel.

Definition: 2.1 [6,7]

Let X be a non-empty set. The subfamily $\mu \subseteq P(X)$ is said to be a supra topology on X if $X \in \mu$ and μ is closed under arbitrary union. The pair (X, μ) is called a supra topological space.

The elements of μ are said to be supra open in (X, μ). Complement of supra open sets are called supra closed sets.

Definition: 2.2 [7]

Let A be a subset of (X, μ) . Then

(i) The supra closure of a set A is, denoted by $cl^{\mu}(A)$, defined as $cl^{\mu}(A) = \bigcap \{B : B \text{ is a supra closed and } A \subseteq B\}.$

(ii) The supra interior of a set A is, denoted by $int^{\mu}(A)$, defined as $int^{\mu}(A) = \bigcup \{B : B \text{ is a supra open and } B \subseteq A\}$.

Definition: 2.3 [6]

Let (X, τ) be a topological space and μ be a supra topology of X. We call μ is a supra topology associated with τ if $\tau \subseteq \mu$.

Definition: 2.4 [4]

Let (X, τ) and (Y, σ) be two topological spaces and $\tau \subseteq \mu$. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called supra continuous, if the inverse image of each open set of Y is a supra open set in X.

Definition: 2.5 [5]

Let (X, τ) and (Y, σ) be two topological spaces and μ and λ be supra topologies associated with τ and σ respectively. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be supra irresolute, if f^{-1} (A) is supra open set of X for every supra open set A in Y.

Definition: 2.6 [3]

A subset A of a supra topological space (X, μ) , is called Supra Regular Generalized star b- closed set (briefly rg^*b^{μ} -closed set) if bcl $^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is rg^{μ} -open in X.

The family of all rg*b-closed subsets of X is denoted by RG^*B^{μ} -C(X).

Definition: 2.7[3]

Let A be a subset (X, μ) . Then

- (i) The supra rg*b-closure of a set A is, denoted by $rg*b^{\mu} - cl(A)$, defined as $rg*b^{\mu} - cl(A) = \cap \{B : B$ is supra rg*b-closed and $A \subseteq B\}$
- (ii) The supra rg*b-interior of a set A is, denoted by $rg*b^{\mu} - int(A)$, defined as $rg*b^{\mu} - int(A) = \bigcup \{B : B \text{ is supra rg*b-open and } B \subseteq A \}$

III. SUPRA rg*b-LOCALLY CLOSED SETS

In this section, we introduce the notion of supra rg*b-locally closed sets and discuss some of their properties.

Definition: 3.1

Let (X, μ) be a supra topological space. A subset A of (X, μ) is called supra rg*b -locally closed set (briefly supra rg*b - LC set), if A=U \cap V, where U is supra rg*b -open in (X, μ) and V is supra rg*b -closed in (X, μ) .

The collection of all supra rg*b-locally closed sets of X will be denoted by S- rg*b-LC(X).

Remark: 3.2

Every supra rg*b -closed set (resp. supra rg*b -open set) is S-rg*b -LC.

Definition: 3.3

For a subset A of a supra topological space (X, μ), A \in S-rg*b -LC*(X, μ), if there exist a supra rg*b -open set U and a

International Journal of Trend in Research and Development, Volume 4(6), ISSN: 2394-9333 www.ijtrd.com

supra closed set V of (X, μ), respectively such that A=U \cap V.

Definition: 3.4

For a subset A of (X, μ) , $A \in S$ - rg^*b -LC** (X, μ) , if there exist a supra open set U and a supra rg^*b -closed set V of (X, μ) , respectively such that $A=U \cap V$.

Definition: 3.5

Let (X, μ) be a supra topological space. If the space (X, μ) is called a supra RG*B-space, then the collection of all supra rg*b-open subsets of (X, μ) is closed under finite intersection.

Definition: 3.6

Let A, B \subseteq (X, μ). Then A and B are said to be supra β -separated if A \cap $rg^*b^{\mu} - cl(B) = B \cap$ $rg^*b^{\mu} - cl(A) = \phi$.

Theorem: 3.7

Let A be a subset of (X, μ) . If $A \in S$ - rg^*b - $LC^*(X, \mu)$ or $A \in S$ - rg^*b - $LC^{**}(X, \mu)$, then A is S- rg^*b -LC.

Proof:

The proof is obvious by Definitions and the following example.

Example: 3.8

Let X = {a, b, c} and μ = { ϕ , X, {a, b}, {a, c}}. Then {b,c} \in S- rg*b -LC but not S- rg*b -LC* and S- rg*b -LC**

Theorem: 3.9

For a subset A of (X, μ) , the following are equivalent:

(i)	$A \in S$ - rg*b -LC*(X, μ).
(ii)	A = U $\cap cl^{\mu}(A)$, for some supra rg*b-open
	set U.

- (iii) $cl^{\mu}(A) A$ is supra rg*b-closed.
- (iv) $A \cup [X cl^{\mu}(A)]$ is supra rg*b-open.

Proof:

(i) \Rightarrow (ii): Given $A \in S\text{-rg}*b\text{-LC}*(X, \mu)$. Then there exist a supra rg*b-open subset U and a supra closed subset V such that $A=U \cap V$. Since $A \subset U$ and $A \subset cl^{\mu}(A)$, $A \subset U \cap cl^{\mu}(A)$. Conversely, $cl^{\mu}(A) \subset V$ and hence $A = U \cap V \supset U \cap cl^{\mu}(A)$. Therefore, $A = U \cap cl^{\mu}(A)$.

(ii) \Rightarrow (i): Let $A = U \cap cl^{\mu}(A)$, for some supra rg*b-open set U. Then, $cl^{\mu}(A)$ is supra closed and hence $A = U \cap cl^{\mu}(A) \in S$ -rg*b-LC*(X, μ).

(ii) \Rightarrow (iii): Let A = U $\cap cl^{\mu}(A)$, for some supra rg*b-open set U. Then A \in S-rg*b -LC*(X, μ). This implies U is supra rg*b-open and $cl^{\mu}(A)$ is supra closed. Therefore, $cl^{\mu}(A) - A$ is supra rg*b-closed.

(iii) \Rightarrow (ii): Let U = X - [$cl^{\mu}(A)$ - A]. By (iii), U is supra rg*bopen in X. Then A = U $\cap cl^{\mu}(A)$ holds.

(iii) \Rightarrow (iv): Let Q = $cl^{\mu}(A) - A$ be supra rg*b-closed. Then X-Q = X - $[cl^{\mu}(A) - A] = A \cup [(X - cl^{\mu}(A)]]$. Since X-Q is supra rg*b-open, A $\cup [X - cl^{\mu}(A)]$ is supra rg*b-open.

(iv) \Rightarrow (iii): Let $U = A \cup [(X - cl^{\mu}(A)]]$. Since X - U is supra rg*b-closed and $X - U = cl^{\mu}(A) - A$ is supra rg*b-closed.

Theorem: 3.10:

For a subset A of (X, μ), the following are equivalent:

IJTRD | Nov-Dec 2017 Available Online@www.ijtrd.com

- (i) $A \in S$ rg^*b -LC(X, μ).
- (ii) $A = U \cap rg^*b^{\mu} cl(A)$, for some supra rg*b-open set U.
- (iii) $rg^*b^{\mu} cl(A) A$ is supra rg*b-closed.
- (iv) $A \cup [X rg^*b^{\mu} cl(A)]$ is supra rg*b-open.
- (v) $A \subseteq rg^*b^{\mu} int(A \cup [X rg^*b^{\mu} cl(A)])$

Proof:

(i) \Rightarrow (ii): Given $A \in S \cdot rg^*b \cdot LC(X, \mu)$. Then there exist a supra rg^*b -open subset U and a supra rg^*b -closed subset V such that $A=U \cap V$. Since $A \subset U$ and $A \subset rg^*b^{\mu} - cl(A), A \subset U \cap rg^*b^{\mu} - cl(A)$. Conversely, $rg^*b^{\mu} - cl(A) \subset V$ and hence $A = U \cap V \supset U \cap rg^*b^{\mu} - cl(A)$. Therefore, $A = U \cap rg^*b^{\mu} - cl(A)$.

(ii) \Rightarrow (i): Let A = U $\cap rg^*b^{\mu} - cl(A)$, for some supra rg*b-open set U. Then, $rg^*b^{\mu} - cl(A)$ is supra rg*b-closed and hence A = U $\cap rg^*b^{\mu} - cl(A) \in S$ -rg*b-LC(X, μ).

(ii) \Rightarrow (iii): Let A = U $\cap rg^*b^{\mu} - cl(A)$, for some supra rg*bopen set U. Then A \in S-rg*b -LC(X, μ). This implies U is supra rg*b-open and $rg^*b^{\mu} - cl(A)$ is supra rg*b-closed. Therefore, $rg^*b^{\mu} - cl(A) - A$ is supra rg*b-closed.

(iii) \Rightarrow (ii): Let U = X - [$rg*b^{\mu} - cl(A) - A$]. By (iii), U is supra rg*b-open in X. Then A = U $\cap rg*b^{\mu} - cl(A)$ holds.

(iii) \Rightarrow (iv): Let Q = $rg^*b^{\mu} - cl(A) - A$ be supra rg*b-closed. Then X-Q = X - $[rg^*b^{\mu} - cl(A) - A] = A \cup [(X - rg^*b^{\mu} - cl(A)]]$. Since X-Q is supra rg*b-open, A $\cup [X - rg^*b^{\mu} - cl(A)]$ is supra rg*b-open.

(iv) \Rightarrow (iii): Let $U = A \cup [(X - rg^*b^{\mu} - cl(A)]]$. Since X - U is supra rg*b-closed and $X - U = rg^*b^{\mu} - cl(A) - A$ is supra rg*b-closed.

(iv) \Rightarrow (v): Since A \cup [X - rg^*b^{μ} - cl(A)] is supra rg*b-open, A $\subseteq rg^*b^{\mu}$ - $int(A \cup [X - rg^*b^{\mu} - cl(A)])$

 $(v) \Rightarrow (iv)$: Obvious.

Theorem: 3.12:

Let $\,(X,\,\mu)$ be a supra RG*B-space and $A \subset X$ be S- rg*b –LC. Then

- (i) $rg^*b^{\mu} int(A) \in S rg^*b LC(X,\mu)$.
- (ii) $rg^*b^{\mu} cl(A)$ is contained in a supra rg*b- closed set (iii) A is supra rg*b-open if $rg^*b^{\mu} - cl(A)$ is supra rg*bopen.

Proof:

(i) Let $A = U \cap rg^*b^{\mu} - cl(A)$, for some supra rg^*b -open set U. Now, $rg^*b^{\mu} - int(A) = rg^*b^{\mu} - int(U \cap rg^*b^{\mu} - cl(A)) = rg^*b^{\mu} - int(U) \cap rg^*b^{\mu} - int(rg^*b^{\mu} - cl(A)) = rg^*b^{\mu} - int(U) \cap rg^*b^{\mu} - cl(rg^*b^{\mu} - int(A))$. Thus $rg^*b^{\mu} - int(A)$ is S- $rg^*b - LC(X,\mu)$.

(ii) $rg^*b^{\mu} - cl(A) = rg^*b^{\mu} - cl(U \cap rg^*b^{\mu} - cl(A)) \subset rg^*b^{\mu} - cl(U) \cap rg^*b^{\mu} - cl(A)$ which is a rg*b-closed set.

(iii) $rg^*b^{\mu} - int(A) = rg^*b^{\mu} - int(U \cap rg^*b^{\mu} - cl(A)) = rg^*b^{\mu} - int(U) \cap rg^*b^{\mu} - int(rg^*b^{\mu} - cl(A)) = U \cap rg^*b^{\mu} - cl(A)$ =A, since $rg^*b^{\mu} - cl(A)$ is supra rg*b- open. Hence A is supra rg*b-open.

Theorem: 3.12:

If $A \subset B \subset X$ and B is S-rg*b-LC, then there exists a S-rg*b-LC set C such that $A \subset C \subset B$.

Proof:

Immediate.

Theorem: 3.13:

For a subset A of (X, μ) , if $A \in S$ -rg*b-LC**(X, μ), then there exist a supra open set G such that $A = G \cap cl^{\mu}(A)$

Proof:

Let $A \in S\text{-rg}*b\text{-LC}**(X, \mu)$. Then $A=G \cap V$, where G is a supra open set and V is a supra rg*b-closed set. Then $A = G \cap V \Rightarrow A \subset G$. Obviously, $A \subset cl^{\mu}(A)$. Hence $A \subset G \cap cl^{\mu}(A) \cdots$ (1). Also we have $cl^{\mu}(A) \subset V$. This implies $A = G \cap V \supset G \cap cl^{\mu}(A) \Rightarrow A \supset G \cap cl^{\mu}(A) \cdots$ (2). From (1) and (2), we get $A = G \cap cl^{\mu}(A)$.

Theorem: 3.14:

For a subset A of (X, μ) , if $A \in S$ -rg*b-LC**(X, μ), then there exist a supra open set G such that $A = G \cap rg*b^{\mu} - cl(A)$.

Proof:

Let $A \in S$ -rg*b-LC**(X, μ). Then $A=G \cap V$, where G is a supra open set and V is a supra rg*b-closed set. Then $A = G \cap V \Rightarrow A \subset G$. Obviously, $A \subset rg*b^{\mu} - cl(A)$. Hence $A \subset G \cap rg*b^{\mu} - cl(A) - cl(A) = 0$. This implies $A = G \cap V \supset G \cap rg*b^{\mu} - cl(A) \Rightarrow A \supset G \cap rg*b^{\mu} - cl(A) = 0$. This implies $A = G \cap V \supset G \cap rg*b^{\mu} - cl(A) \Rightarrow A \supset G \cap rg*b^{\mu} - cl(A) = 0$.

Theorem: 3.15:

Let A be a subset of (X, μ) . If $A \in S\text{-rg*b-LC**}(X, \mu)$, then $rg*b^{\mu} - cl(A) - A$ is supra rg*b-closed and $A \cup [(X\text{-} rg*b^{\mu} - cl(A)]$ is supra rg*b-open.

Proof:

The proof is obvious from the Definitions and results.

Theorem: 3.16

Suppose (X, μ) is a supra RG*B-space. Let $A \in S\text{-rg*b-LC*}(X, \mu)$ and $B \in S\text{-rg*b-LC*}(X, \mu)$. If A and B are supra rg*b- separated, then $A \cup B \in S\text{-rg*b-LC}(X, \mu)$.

Proof:

Let $A \in S \cdot rg^*b \cdot LC(X, \mu)$ and $B \in S \cdot rg^*b \cdot LC(X, \mu)$. By Theorem: 3.9, there exist supra rg^*b -open sets P and S of (X, μ) such that $A = P \cap cl^{\mu}(A)$ and $B = S \cap cl^{\mu}(B)$. Put $L = P \cap [X - cl^{\mu}(B)]$ and $M = S \cap [X - cl^{\mu}(A)]$. Then $L \cap rg^*b^{\mu} - cl(A)] = [P \cap (X - rg^*b^{\mu} - cl(B)] \cap rg^*b^{\mu} - cl(A)] = P \cap (rg^*b^{\mu} - cl(B))^c \cap rg^*b^{\mu} - cl(A) = A \cap (rg^*b^{\mu} - cl(B))^c = A$, since $A \subset (rg^*b^{\mu} - cl(B))c$. Similarly, $M \cap rg^*b^{\mu} - cl(B) = B$. Then $L \cap rg^*b^{\mu} - cl(B)] = \phi$ and $M \cap rg^*b^{\mu} - cl(A) = \phi$. Since X is a supra RG*B-space, L and M are supra rg^*b -open. $(L \cup M) \cap L \cap rg^*b^{\mu} - cl(A) = (L \cup M) \cap (rg^*b^{\mu} - cl(A) \cup rg^*b^{\mu} - cl(B)]) = (L \cap rg^*b^{\mu} - cl(A)]) \cup (L \cap rg^*b^{\mu} - cl(B)) \cup (M \cap rg^*b^{\mu} - cl(B)) \cup (M \cap rg^*b^{\mu} - cl(B)) = A \cup B$. Therefore $A \cup B \in S$ -rg*b-LC(X, μ).

Definition: 3.17

Let (X, μ) be a supra topological space. A subset A of (X, μ) is called supra rg*b-dense, if $rg*b^{\mu} - cl(A) = X$.

Definition: 3.18

A supra topological space (X, μ) is called supra rg*b-submaximal, if every supra rg*b-dense subset is supra rg*b-open in X.

Theorem: 3.19

A supra topological space (X, μ) is supra rg*b-submaximal if and only if P(X) = S-rg*b-LC(X) holds.

Proof:

Necessity: Let $A \in P(X)$ and $G = A \cup [X - rg^*b^{\mu} - cl(A)]$. Then $rg^*b^{\mu} - cl(G) = X$ and so G is supra rg*b-dense and hence supra rg*b-open by assumption. By Theorem: 3.10, $A \in S$ -rg*b-LC(X). Hence P(X) = S-rg*b-LC(X).

Sufficiency: Let every subset of X be supra rg^*b -locally closed. Let A be supra rg^*b -dense in X. Then $rg^*b^{\mu} - cl(A) = X$. Now $A = A \cup [X - rg^*b^{\mu} - cl(A)]$. By Theorem: 3.10, A is supra rg^*b -open. Hence X is supra rg^*b -submaximal

Theorem: 3.20

Let (X, μ) and (Y, λ) be the supra topological spaces.

- (1) If $M \in S$ rg*b -LC(X, μ) and $N \in S$ rg*b -LC(Y, λ), then $M \times N \in S$ - rg*b -LC (X × Y, $\mu \times \lambda$).
- (2) If $M \in S$ rg*b -LC*(X, μ) and $N \in S$ rg*b -LC*(Y, λ), then $M \times N \in S$ rg*b -LC*(X \times Y, $\mu \times \lambda$).
- (3) If $M \in S$ $rg*b-LC**(X, \mu)$ and $N \in S$ $rg*b-LC**(Y, \lambda)$, then $M \times N \in S$ rg*b- $LC**(X \times Y, \mu \times \lambda)$.

Proof:

Let $M \in S$ - rg*b-LC(X, μ) and $N \in S$ - rg*b-LC(Y, λ). Then there exist a supra rg*b- open sets P and P' of (X, μ) and (Y, λ) and supra rg*b-closed sets Q and Q' of (X, μ) and (Y, λ) respectively such that $M = P \cap Q$ and $N = P' \cap Q'$. Then M $\times N = (P \times P') \cap (Q \times Q')$ holds. Hence $M \times N \in S$ - rg*b-LC(X $\times Y, \mu \times \lambda$). Similarly, the proofs of (2) and (3) follow from the Definitions.

IV. SUPRA rg*b LOCALLY CONTINUOUS FUNCTIONS

In this section we define a new type of functions called Supra rg*b -locally continuous functions (S- rg*b -L-continuous functions), supra rg*b -locally irresolute functions and study some of their properties.

Definition: 4.1

Let (X, τ) and (Y, σ) be two topological spaces and $\tau \subseteq \mu$. A function $f : (X, \tau) \rightarrow (Y,\sigma)$ is called S- rg*b -L-continuous (resp., S- rg*b -L* - continuous, resp., S- rg*b -L** - continuous), if $f^{-1}(A) \in S$ - rg*b -LC (X,μ) , (resp., $f^{-1}(A) \in S$ - rg*b -LC* (X,μ)) for each $A \in \sigma$.

Definition: 4.2

Let (X, τ) and (Y, σ) be two topological spaces and μ and λ be supra topologies associated with τ and σ respectively. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be S- rg*b -L-irresolute (resp., S- rg*b -L*- irresolute, resp., S- rg*b -L**-irresolute) if $f^1(A) \in S$ - rg*b -LC (X, μ) , (resp., $f^1(A) \in S$ - rg*b -LC* (X, μ) , resp., $f^1(A) \in S$ - rg*b -LC**(X, μ)) for each $A \in S$ rg*b -LC (Y, σ) (resp., $A \in S$ - rg*b -LC* (Y, σ) , resp., $A \in S$ rg*b -LC* (Y, σ)).

Theorem: 4.3

Let (X, τ) and (Y,σ) be two topological spaces and μ be a supra topology associated with τ . Let f: $(X, \tau) \rightarrow (Y,\sigma)$ be a function. If f is S- rg*b -L*-continuous or S- rg*b -L**- continuous, then it is S- rg*b -L-continuous.

Proof:

International Journal of Trend in Research and Development, Volume 4(6), ISSN: 2394-9333 www.ijtrd.com

The proof is trivial from the Definitions.

Theorem: 4.4

Let (X, τ) and (Y, σ) be two topological spaces and μ and λ be supra topologies associated with τ and σ respectively . Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function. If f is said to be S- rg*b -Lirresolute (resp., S- rg*b -L*- irresolute, resp., S- rg*b -L*irresolute), then it is S- rg*b -L-continuous (resp., S- rg*b -L* continuous, resp., S- rg*b -L** - continuous).

Proof:

The proof is trivial from the Definitions.

Theorem: 4.5

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be supra rg*b-LC-continuous and A be supra rg*b-closed in X. Then the restriction f / A : A \rightarrow Y is S-rg*b-L-continuous.

Proof:

Let U be supra open in Y. Then $f^{-1}(U)$ in supra rg*b-LC in X. So $f^{-1}(U) = G \cap F$ where G is supra rg*b-open and F is supra rg*b-closed in X. Now $(f / A)^{-1}(U) = (G \cap F) \cap A = G \cap (F \cap A)$ (resp. $(G \cap A) \cap F$) where $F \cap A$ is supra rg*b-closed (resp. $G \cap A$ is supra rg*b-open) in X. Therefore $(f / A)^{-1}(U)$ is supra rg*b-LC in X. Hence f / A is supra rg*b-L-continuous.

Theorem: 4.6

A space (X, μ) is supra rg*b-submaximal if and only if every function having (X, μ) as domain is supra rg*b-L-continuous.

Proof:

Necessity: Let (X, μ) be supra rg*b-submaximal. Then rg*b-LC(X) = P(X) by Theorem: 3.19. Let f: $(X, \mu) \rightarrow (Y, \sigma)$ be a function and A $\in \sigma$. Then $f^{-1}(A)\in$ S- rg*b-LC(X) and so f is S-rg*b-L-continuous.

Sufficiency: Let every function having (X, μ) as domain be supra rg*b-L-continuous. Let Y= {0, 1} and $\sigma = \{\phi, Y, \{0\}\}$. Let A \subset (X, μ) and f: (X, μ) \rightarrow (Y, σ) be defined by f(x) = 0 if x \in A and f(x) = 1 if x \notin A. Since f is supra rg*b-L-continuous, A \in S- rg*b-LC(X, μ). Therefore P(X) = S- rg*b-LC(X) and so X is supra rg*b-submaximal by Theorem: 3.19.

Theorem: 4.7

If g: $X \rightarrow Y$ is S- rg*b-L-continuous and h: $Y \rightarrow Z$ is supra continuous, then hog : $X \rightarrow Z$ is S- rg*b-L-continuous.

Proof:

Let g: $X \to Y$ is S- rg*b-L – continuous and h : $Y \to Z$ is supra continuous. By the Definitions, g⁻¹(V) \in S- rg*b-LC (X), V \in Y and h⁻¹ (W) \in Y, W \in Z. Let W \in Z. Then (hog)⁻¹ (W) = (g⁻¹ h⁻¹) (W) = g⁻¹ (h⁻¹(W)) = g⁻¹(V), for V \in Y. From this, (hog)⁻¹(W) = g⁻¹(V) \in S- rg*b-LC (X), W \in Z. Therefore, hog is S- rg*b-L- continuous.

Theorem: 4.8

If $g:X\to Y$ is S- $rg^*b\text{-}L-$ irresolute and $h:Y\to Z$ is S- $rg^*b\text{-}L\text{-}continuous$, then h o $g:X\to Z$ is S- $rg^*b\text{-}L-$ continuous.

Proof:

Let $g: X \to Y$ is S- rg^*b -L – irresolute and $h: Y \to Z$ is S- rg^*b -L-continuous. By the Definitions, $g^{-1}(V) \in S$ - rg^*b -LC(X), for $V \in S$ - rg^*b -LC (Y) and $h^{-1}(W) \in S$ - rg^*b -LC (Y), for $W \in Z$. Let $W \in Z$. Then $(hog)^{-1}(W) = (g^{-1} h^{-1}) (W) = g^{-1}(h^{-1})^{-1}(W) = g^{-1}(V)$, for $V \in S$ - rg^*b -LC(Y). This implies, $(hog)^{-1}(W) = g^{-1}(V) \in S$ - rg^*b -LC (X), $W \in Z$. Hence hog is S- rg^*b -L- continuous.

Theorem: 4.9:

If $g: X \to Y$ and $h: Y \to Z$ are S- rg^*b -L – irresolute , then h o $g: X \to Z$ is also S- rg^*b -L – irresolute.

Proof:

By the hypothesis and the Definitions, we have $g^{-1}(V) \in S$ -rg*b-LC (X), for $V \in S$ - rg*b-LC (Y) and $h^{-1}(W) \in S$ - rg*b-LC (Y), for $W \in S$ - rg*b-LC(Z). Let $W \in S$ - rg*b-LC(Z). Then $(hog)^{-1}(W) = (g^{-1} h^{-1}) (W) = g^{-1}(h^{-1}(W)) = g^{-1}(V)$, for $V \in S$ -rg*b-LC(Y). Therefore, $(hog)^{-1}(W) = g^{-1}(V) \in S$ - rg*b-LC (X), $W \in S$ - rg*b-LC (Z). Thus hog is S- rg*b-L – irresolute.

References

- [1] N. Bourbaki, General Topology, *Part 1, Addison-Wesley* (Reading, Mass, 1966)
- [2] K Balachandran, P Sundaram and H Maki. Generalized locally closed sets and GLC- continuous functions, *Indian J. Pure Appl. Math.*, 27 (3) (1996), 235-244.
- [3] L.Chinnapparaj, P.Sathishmohan, V.Rajendran and K.Indirani, On Supra Regular Generalized star b-Closed Sets, IOSR Journal of Mathematics, 11(5)(2015),44-48
- [4] R. Devi, S. Sampathkumar and M. Caldas, On supra α open sets and S α - continuous functions, *General Mathematics*, 16(2) (2008), 77-84.
- [5] M. Kamaraj, G. Ramkumar and O. Ravi, On Supra quotient mappings, *International* Journal of Mathematical Archive, 3 (1) (2012), 245-252.
- [6] A S Mashhour, A A Allam, F S Mahmond and F H Khedr. On Supra topological spaces, *Indian J.Pure and Appl. Math.*, 14(4) (1983), 502-610.
- [7] O R Sayed and T Noiri. On supra b-open sets and supra bcontinuity on topological spaces, European J. Pure and Appl. Math., 3(2) (2010), 295-302.
- [8] G.Sindhu and K.Indirani, On Regular Generalized star b-Closed Set, *International* Journal of Mathematical Archive-4(10), 2013, 85-92.