
Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Recent Innovations in Engineering and Technology (RIET -2017) organized by G Pullaiah College of

Engineering & Technology, Kurnool, Andhra Pradesh on 15
th

 & 16
th

 Dec-17 29 | P a g e

Enhancing Secluded Security for the SDK Mobile

Platforms using Integrity Protection

S. Vinod Kumar
1
, K. Shouryadhar

2
.

1,2
Ravidra college of Engineering for Women, Department of computer science and Engineering,

Kurnool, Andhra Pradesh, India.

Abstract----Mobile Applications are a rapidly developing

segment of the global Mobile Market. They consist of software

that runs on a mobile device and performs certain tasks before

the user of the Mobile Phone. They can be downloaded

physically through USB / WIFI from a desktop or can be

downloaded by a web server over internet. The security of

mobile devices such as cellular phones and smartphones has

gained extensive attention due to their increasing usage in

people’s daily life. The problem is challenging as the computing

environments of these devices have become more open and

general-purpose while at the same time they have the constraints

of performance and user experience. We propose and implement

an effective solution for the integrity protection of real-world

cellular phone platforms, which is motivated by the

disadvantages of applying traditional integrity models on these

performance and user experience constrained devices.

Index Terms - Integrity protection, open mobile platforms,

Smartphone security.

1. INTRODUCTION

Generally with the increasing computing scalability and

network connectivity of mobile devices such as cellular

phones and smartphones, more applications and services are

deployed on these platforms. Thus, their computing

environments become more open than ever before. The security

issue in these environments has gained considerable attention

nowadays. According to McAfee’s 2008 Mobile Security Report,

nearly 14 percent of global mobile users have been directly

infected or have known someone who was infected by a mobile

virus. More than 86 percent of consumers worry about receiving

inappropriate or unsolicited content, fraudulent bill increases, or

information loss and theft, and more than 70 percent of users

expect mobile operators or device manufacturers to preload

mobile security functionality the number of infected mobile

devices increases remarkably according to McAfee’s 2009 report.

This demands then that the solution must be simple but general

enough so that most users can rely on default configurations

even after new application installed. According to F-secure, by

the end of 2007, more than 370 different malware have been

detected on various cell phones, including viruses, Trojans, and

spyware. Most existing infections are due to user downloaded

applications, such as Dampig,

Fontal, Locknut, and Skulls. Other

major infection mechanisms include Bluetooth and multimedia

message service (MMS), such as Cabir, CommWarrior, and

Mabir. Many exploits compromise the integrity of a mobile

platform by maliciously modifying data or code on the device.

Considering the increasing attacks through Bluetooth and MMS

interfaces, an effective integrity protection should confine the

interactions between any code or data received from these

communication interfaces and system parts.

A. Mobile Application Downloads

Figure 1: Free Mobile Application Downloads Worldwide

Impact on Business:

Boom in Business-As more and more software development

focuses on smartphones, a new industry is building up to help

developers create and rapidly deploy mobile applications.

Statistics such as these have motivated an eruption of developers

who are hoping to cash in on this newfound mobile boom.

Figure 2: Average Downloading Mobile Applications

Excel Growth:

Some fight wars with words, others with numbers. Hardly a day

passes without new data on mobile apps, the small applications

that can be downloaded to smart-phones to perform all kinds of

feats, such as accessing social networks, playing games and

identifying unknown music.

Mobile applications are literally paving the way for companies to

generate a ton of sales and revenue. The main reason developers

all over the world are calling mobile apps a "gold rush" is

because companies of all sizes can greatly flourish by creating

mobile applications.

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Recent Innovations in Engineering and Technology (RIET -2017) organized by G Pullaiah College of

Engineering & Technology, Kurnool, Andhra Pradesh on 15
th

 & 16
th

 Dec-17 30 | P a g e

II. MOBILE THREAT TRENDS

We focus our study on the integrity protection of mobile

platforms. Particularly for this purpose, we study the adversary

model of mobile malware from two aspects: integrity assets and

attack mechanisms. Note that, in this paper, we consider attacks

from application level.

A. Malware.

Malware, short for malicious software, is software used to

disrupt computer operation, gather sensitive information, or gain

access to private computer systems. It can appear in the form of

code, scripts, active content, and other software. 'Malware' is a

general term used to refer to a variety of forms of hostile or

intrusive software.

Malware includes computer viruses, ransomware, worms, trojan

horses, rootkits, keyloggers, dialers, spyware, adware, malicious

BHOs, rogue security software, and other malicious programs;

the majority of active malware threats are usually worms or

trojans rather than viruses. In law, malware is sometimes known

as a computer contaminant, as in the legal codes of several

U.S. states. Malware is different from defective software, which

is a legitimate software but contains harmful bugs that were not

corrected before release.

B. Assets for Platform Integrity

Resources of network service provider. A mobile device

usually consists of sensitive data from network service provider,

such as those stored in SIM card for network and service profiles.

Unauthorized access to these data can compromise the running

behaviour of the device and communications between the device

and wireless network.

Device data and status settings. Modern mobile devices are

employed with many sensors, such as timer, GPS, touch screen,

and webcam. Manipulating these sensors without authorization

from the user can cause unexpected behaviour of a device. Also,

a device provides many status setting functions such as those for

3G, WiFi, Bluetooth, screen brightness level, and battery.

 Resources of mobile user. A user stores many personal data

on device, such as messages, address book, and online

credentials. Many online service providers store user data on

device side, such as online bank and entertainment services,

which are targets for malware. By sending SMS/ MMS messages

and making hidden phone calls to premium phone numbers, a

malware can generate monetary cost to a mobile user.

 We give the idea of some example malware and their

infection mechanisms and target integrity assets.

The Mobile Malwares and their Behaviours

 DAmpig, Fontal, Locknut these are infected by

Bluetooth, MMS, internet and modify system files and

configurations, disable application manager and phone

services.

 Cabir,CommWarrior,Mabir malware’s propagation

through Bluetooth, MMS which scan new devices with

Bluetooth,sends user data and malicious code to new

targets without authorization.

 Doomboot is affected with Bluetooth, MMS and blocks

access to memory card, delete system files and installed

application files and data.

 Skulls is by Bluetooth and blocks access to memory

card, delete system files and installed application files

and data.

 Redbrowser and Mquito malwares is by downloading

java applications which sends SMS messages to

premium rate number at a rate of 30 and 40 rupees per

message.

C. Mobile Phone Applications Types

In this section, we first classify the major players in a mobile

phone system from a security perspective, and identify their

interactions and the potential security problems that stem from

these interactions. We then define the security requirements for a

solution to address these problems. In general, we expect a

solution that ensures protection of the security-critical (trusted)

applications in their use of operating system and user-space

service resources in a system that also runs untrusted (e.g.,

downloaded) applications.Finally, we expect that phone systems

that achieve such requirements be capable of proving that to

remote parties (e.g., the mobile banking client prove its phone

system integrity to the bank). We first classify the entities on the

mobile phone system into four categories.

Fig. Mobile phone systems consist of trusted applications,

untrusted applications, user-space services that provide function

to both trusted and untrusted applications, and the operating

system.We prohibit untrusted applications from communicating

with trusted applications.

Trusted Applications: Trusted applications are the

applications that are entrusted with the processing of security-

critical data. These applications must not receive any untrusted

inputs as described below. If one of these applications is

compromised, then the phone system is compromised. Such

applications can include both pre-installed and thirdparty

applications, such as a mobile banking application. We assume

that trusted third-party applications possess a certificate of trust

from an acceptable authority.

 Untrusted Applications: Untrusted applications are those

that are not entrusted with any security-critical data. Such

applications may be compromised without compromising the

phone system. Such applications include third-party downloaded

applications, but may also include pre-installed applications that

do not perform security-critical operations.

User-Space Services: Phone systems typically consist of

several user-space programs that provide services to other

applications. Examples of these include the software installer,

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Recent Innovations in Engineering and Technology (RIET -2017) organized by G Pullaiah College of

Engineering & Technology, Kurnool, Andhra Pradesh on 15
th

 & 16
th

 Dec-17 31 | P a g e

the telephony server, windowing server, GPS server, etc. These

services cater to both trusted and untrusted applications. Such

services are also trusted in that if one is compromised, then the

phone system is compromised.

Operating System: The phone’s operating system

(e.g., Linux, Symbian, Windows Mobile, etc.) is also trusted.

These entities can interact leading to security problems as

described below.

Untrusted and Trusted Interactions We prohibit untrusted

applications from communicating with trusted applications

directly or indirectly. This prohibition protects the secrecy and

integrity of trusted applications. From an integrity perspective,

such communication is undesirable because if an untrusted game

or other malicious application is allowed to modify a file read by

trusted application or send an IPC to a trusted application, then it

may impact the integrity of that trusted application. From a

secrecy perspective, we also prohibit flows from trusted

applications to untrusted applications to prevent leakage

security-critical data. In general, there is no need for a security-

critical application to provide data to an untrusted application.

Untrusted and Service Interaction User-space services

perform operations for both the trusted and untrusted

applications. For example, an untrusted game may call the

telephony server to check battery status or send GPRS data

requests to its server, so some interaction with the telephony

server must be permitted. In processing such requests, we expect

that every user-space service will prohibit operations that would

result in an information flow between a trusted and an untrusted

application. This means that each user-space service must be

able to mediate operations that may access security-critical data

and that the service must enforce the expected access policy. In

addition, each user-space service must protect itself from

requests from untrusted applications, as userspace services are

trusted by our trusted applications.

III. DESIGN OF SEIP

This section presents design details and integrity rules of SEIP

for mobile platform based on discussed security threats and our

strategies. Although we describe within the context of Linux-

based mobile systems (specifically, LiMo platform), our

approach can be applied to other phone systems such as Symbian,

as they have similar internal software architecture. One

assumption is that we do not consider attacks in kernel and

hardware, such as installing kernel rootkits or reflashing

unauthentic kernel and filesystem images to devices. That is, our

goal is to prevent software-based attacks from application level.

A. Trusted and Untrusted Domains

To preserve the integrity of a mobile device, we need to

identify the integrity level of applications and resources. In

mobile platforms, typically trusted applications such as those

from device manufacture and wireless network provider are

more carefully designed and tested as they provide system and

network services to other applications. Thus, in our model, we

regard them as high-integrity applications or subjects. Note that

completely verifying the trustworthiness of a high-integrity

subject, for example, via static code analysis, is out of the scope

of SEIP. As aforementioned, our major objective is to prevent

platform integrity compromising from user installed applications.

Therefore, by default all user installed applications later on the

platform are regarded as low integrity. In some cases, a user

installed application should be regarded as high integrity,

example, if it is provided by the network carrier or trusted

service provider and requires sensitive operations such as

accessing SIM or user data, for example, for mobile bank and

payment applications. For an applica-tion belonging to third-

party service provider, its integrity level may be based on the

trust agreement between the service provider and user or

manufacturer/network provi-der. For example, an antivirus agent

on a smartphone from a trusted service provider needs to access

many files and data of the user and network provider and should

be protected from modification of low-integrity software;

therefore, it is regarded as high integrity. Other high-integrity

applications can be trusted platform management agents such as

device lock, certificate management, and embedded firewall.

B. Subjects and Objects:

The design distinguishes subjects and objects in OS.

Basically, subjects are active entities that can access objects,

which are passive entities in a system such as files and sockets.

Subjects are mainly active processes and daemons, and objects

include all possible entities that can be accessed by processes,

such as files, directories, filesystems, network objects, program

and data files. Note that a subject can also be an object as it can

be accessed by another process, for example, being launched or

killed. In an OS environment, there are many different types of

access operations. For example, SELinux predefines a set of

object classes and their operations. For integrity purposes, we

focus on three access operations: create, read, and write. From

information flow perspective, all access operations between two

existing entities can be mapped to read-like and write-like

operations.

The network manager framework in LiMo creates and

maintains all network connections and profiles for different

applications, such as packet data protocol (PDP) sessions for

GPRS and access point associations for WiFi connections.

Another example, Gconf daemon (gconfd) stores configuration

data for individual phone applications, which can only access

their data via GConf APIs, and gconfd is the only subject that

can physically (in OS point of view) read and write the objects.

Not only for those objects in regular OS such as files and sockets,

our design protects objects internally maintained by these service

daemons which affect the integrity of a platform.

Rules for Information Flow Control:

Rule 1: create(s; o) Ã L(o) = L(s), where L(x) is the integrity

level of subject or object x: when an object is created by a

process, it inherits the integrity level of the process.

Rule 2: create(s1; s2; o) Ã L(o) = MIN((L(s1);L(s2)): when an

object is created by a trusted process s1 with input/request from

another process s2, the object inherits the integrity level of the

lower bound of s1 and s2.

These two rules are exclusively applied upon a single object

creation. Typically,

Rule 1 applies to objects that are privately created by a process.

For example, an application’s logs, intermediate and output files

are private data of this process. This rule is particularly applied

to Type I trusted subjects and all untrusted subjects. Rule 2

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Recent Innovations in Engineering and Technology (RIET -2017) organized by G Pullaiah College of

Engineering & Technology, Kurnool, Andhra Pradesh on 15
th

 & 16
th

 Dec-17 32 | P a g e

applies to objects that are created by a process upon the request

of another process. In one case, s1 is a server running as a

daemon process, the s2 can be any process that leverages the

function of the daemon process to create objects, e.g., to create a

GPRS session, or access SIM data. In another case, s1 is a

common tool or facility program that can be used by s2 to create

object. In these cases, the integrity level of the created object is

corresponding to the lower of s1 and s2. This rule is applied to

Type III trusted subjects as aforementioned.

Rule 3: can read(s; o) Ã L(s) · L(o): a low integrity process can

read from both low and high integrity entities, but a high

integrity process can only read from entity of the same level.

Rule 4: can write(s; o) Ã L(s) ¸ L(o): a high integrity process can

write to both low and high integrity entities, but a low integrity

process can only write to entity of the same level.

C. Trusted Subjects:

Figure 3: Information flows are allowed between high- and low-

integrity entities, directly or indirectly via trusted subjects

In this project it is distinguished three types of trusted subjects

on mobile platforms, according to their functionalities and

behaviors. Different integrity rules are applied to them for

integrity protection purpose.

Type I trusted subjects. This type includes high-integrity

system processes and services such as init and busybox, which

are basically the trusted computing base (TCB) of the system.

Only high-integrity subjects can have information flow to those

subjects, while un-trusted subjects can only read from them.

Type I trusted subjects also include preinstalled applications

from device manufacture or service provider, such as dialer,

calendar, clock, calculator, contact manager, and so on. As they

usually only interact with other high-integrity subjects and

objects, their integrity level is constant during runtime.

Type II trusted subjects. These are applications provided by

trusted resources, but usually read low-integrity data only, such

as browser, MMS agent, and media player. They are usually

predeployed in many smartphones by default, However, they

mostly read untrusted Internet content or play downloaded media

files in flash memory card. These subjects usually do not

communicate with other high-integrity subjects in most current

smartphone systems, and they do not write to objects which

should be read by other trusted subjects. Therefore, in our design,

we downgrade their integrity level during runtime without

affecting their functions and system performance.

Type III trusted subjects. These are mainly service daemons

such as telephony, message, network manager, interprocess

communication (IPC), device status manager (reading and

setting hardware status), and application and platform

configuration services. Usually these subjects need to interact

with both low- and high-integrity subjects.

Dealing with IPC:

A low-integrity process creates an IPC object and writes to it,

a high-integrity process cannot read from it, according to our

integrity rules. In many mobile Linux platforms such as LiMo,

OpenMoko, GPE, Maemo, and Qtopia, D-Bus is the major IPC,

which is a message-based communication mechanism between

processes. A process builds a connection with a system- or user-

wide D-Bus daemon (dbusd). When the process wants to

communicate to anther process, it sends messages to dbusd via

its connection. The dbusd maintains connections of many

processes, and routes messages between them. A D-Bus message

is an object in our design, which inherits integrity level from its

creating process.

D. Program Installation and Launching:

 An application to be installed is packaged according to

particular format, i.e., .SIS file for Symbian and .ipk for many

Linux-based phone systems, and application installer reads the

program package and metadata and copies the program files into

different locations in local filesystem. As the application installer

is a Type III trusted subject specified by policy, it can read both

high- and low-integrity application packages. Also, according to

our integrity Rule 2 and 5, it writes (when installing) to trusted

part of the filesystem when reads high-integrity software

package, and writes to untrusted part of the filesystem when

reads low-integrity package.

On one aspect, this enhances the security as a malicious

application cannot be launched to a privileged process, which is

a major vulnerability in traditional OS; on the other aspect, this

simplifies policy specification in a real system, which can be

seen in next section.

V. IMPLEMENTATION

We have implemented SEIP on a real LiMo platform. Our

implementation is built on SELinux, which provides

comprehensive security checks via Linux security module (LSM)

in kernel. Also SELinux provides domain-type and role-based

policy specifications, which can be used to define policy rules to

implement high-level security models. However, existing

deployments of SELinux on desktop and servers have very

complex security policies and usually involve heavy

administrative task. Furthermore, current SELinux does not have

an integrity model built-in. On one side, our implementation

simplifies SELinux policy for mobile phone devices based on

SEIP. On the other side, our implementation augments SELinux

policy with built-in integrity consideration.

A. Trusted and Untrusted Domains

All Linux system binaries (e.g., init, busybox), shared

libraries (/lib, /usr /lib), scripts (e.g., inetd, network, portmap),

and nonmutable configuration files (fstab.conf, inetd. conf,

inittab.conf, mdev.conf) are located in a read-only cramfs

filesystem. Also, all phone related application binaries,

configurations, and framework libraries are located in another

cramfs filesystem. All mutable phone related files are located in

an ext3 filesystem, including logs, tmp files, database files,

application configuration files, and user-customizable

configuration files.

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Recent Innovations in Engineering and Technology (RIET -2017) organized by G Pullaiah College of

Engineering & Technology, Kurnool, Andhra Pradesh on 15
th

 & 16
th

 Dec-17 33 | P a g e

Fig. 2. Trusted and untrusted domains and allowed information

flow between them on evaluation platform

all read-only filesystems and part of ext3 filesystem where phone

related files are located are regarded as trusted, and user writable

filesystems are regarded as untrusted. By default, processes

launched from trusted filesystems are trusted subjects, and

processes launched from untrusted filesystems are untrusted

subjects. Note that our approach does not prevent trusted user

application from being installed on the device. For example, a

trusted mobile banking application can be installed in the trusted

read-write filesystem, and the process launched from it is labeled

as trusted.

B. Securing Phone Services

The telephony server provides services to typical phone-related

functions such as voice call, data network (GSM or UMTS), SIM

access, messages (SMS and MMS), and GPS. An application

calls telephony APIs (TAPI) to access services provided by the

telephony server, which in turn connects to the wireless modem

of the device to build communication channels. In our LiMo

platform, message framework and data network framework are

dedicated for short message and data network access services.

An application first talks to these framework severs which in

turn talk to the telephony server. Security controls for those

services can be implemented in their daemons.

Different levels of protection can be implemented for secure

voice call. For example, one policy allows that only trusted

applications can make phone calls, while untrusted application

cannot make any phone call, which is the case in many feature

phones. For another example policy, un-trusted applications can

make usual phone calls but not those of premium services such

as payment-per-minute 900 numbers. Different labels can be

defined for telephone numbers or their patterns. In our

implementation, we allow untrusted applications to call 800 toll-

free numbers only. Similar design is used in message framework.

Fig. 3 shows the workflow for a typical voice call. A client

application calls tapi_call_setup() to initialize a phone call with

TelCallSetupParams t, which includes the target phone number

and type (voice call, data call, or emergency call), and a callback

function to handle possible results. The telephony server

provides intermediate notifications including modem and

connection status to the client. Once the call is established with

the modem, the telephony server sends the connected indication

to the TAPI library which in turn notifies the application via the

registered callback function about the status of call (connected or

disconnected), and then the application handles the processing.

Fig 3. Secure telephony server.

LIMITATIONS

Although we have implemented our design in some major

services of our evaluation platform including IPC (D-Bus),

telephony, device status manager, and system configuration

service, obviously this is not a complete list for a whole platform.

due to lack of source code, we do not have implementation on

data network service and message service. In general, the

framework services of a mobile phone device can be provided by

many different vendors, such that a complete implementation so

far is not feasible in our prototype. One of our design goals is to

ease the integration of security between functional frameworks.

Typically, a framework provider just needs to identify sensitive

functions or APIs that need to be controlled for integrity purpose,

declare a set of corresponding permission names, and insert a

common security hook function into the API implementations of

the service functions, which is implemented in a trusted library

based on our integrity rules. We believe this significantly

releases the burden of security considerations for system

framework developers.

CONCLUSION

In this paper, we present a simple but yet effective and efficient

security solution for integrity protection on mobile phone

devices. Our design captures the major threats from user

downloaded or unintentionally installed applications, including

codes and data received from Bluetooth, MMS, and browser. We

propose a set of integrity rules to control information flows

according to different types of subjects in typical mobile systems.

Based on easy ways to distinguish trusted and untrusted data and

codes, our solution enables very simple security policy

development. We have im-plemented our design on a LiMo

platform and demon-strated its effectiveness by preventing a set

of attacks. The performance study shows that our solution is

efficient by comparing to the counterpart technology on desktop

environments. We plan to port our implementation to other

Linux-based platforms and develop an intuitive tool for policy

development.

References

[1] National Security Agency, “Security-Enhanced Linux,”
http:// www.nsa.gov/research/selinux, 2013.

[2] L. Potter, “Security in Qtopia Phones,” LINUX J., http://

www.linuxjournal.com/article/9896, 2013.

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Recent Innovations in Engineering and Technology (RIET -2017) organized by G Pullaiah College of

Engineering & Technology, Kurnool, Andhra Pradesh on 15
th

 & 16
th

 Dec-17 34 | P a g e

[3] T. Krazit, “The Six Secrets to Mobile Computing Success,”
CNET, http://news.cnet.com/8301-13579_3-9929210-
37.html, 2013.

[4] K.J. Biba, “Integrity Consideration for Secure Computer
System,” Technical Report TR-3153, Mitre Corp., 1977.

[5] A. Bose and K. Shin, “Proactive Security for Mobile
Messaging Networks,” Proc. ACM Workshop Wireless
Security, 2006.

[6] J. Carter, “Using GConf as an Example of How to Create a
Userspace Object Manager,” Proc. Security Enhanced
Linux Symp.,

a. 2007.
[7] J. Cheng, S. Wong, H. Yang, and S. Lu, “SmartSiren: Virus

Detection and Alert for Smartphones,” Proc. ACM Conf.
Mobile Systems, Applications, 2007.

[8] D.D. Clark and D.R. Wilson, “A Comparison of
Commercial and Military Computer Security Policies,”
Proc. IEEE Symp. Security and Privacy, 1987.

Author’s Details

 S. Vinod Kumar is working as Assistant

Professor in the Department of Computer

Science and Engineering at RCEW. He has

obtained his masters degree in Computer

Science from Sree Vidyanikethan

Engineering College (SVEC) Tirupati. He has

obtained his bachelors degree in Information

Technology from St John’s College of

Engineering and Technology (SJCET).

Mr. K. Shouryadhar is working as Assistant

Professor in the Department of Computer

Science and Engineering at RCEW. He has

obtained his masters degree in Computer

Science and Engineering from G. Pullareddy

Engineering College (GPREC) Kurnool. He

has obtained his bachelor's degree in

Information Technology from the Stanley

stephen Engineering college, Kurnool He has worked in the

following industries: RYK - Rajiv Yuva Kiranalu, Kurnool - a

subsidiary Project of DRDA - IKP, A.P Govt. NAPLTech -

Navabharat Agro Products Limited’s Tech division - Hyderabad.

