
International Journal of Trend in Research and Development, Volume 4(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2017
Available Online@www.ijtrd.com 32

An Approach to Test Train Control System Software Safety
1
Nirmal Kumar Gupta and

2
Mohammad Qasim Rafiq,

1,2
Computer Science Department, Jaypee University, Anoopshahr, Bulandshahr, Uttar Pradesh, India

Abstract— With the recent development of embedded system

technology, automation of train control system software is

being promoted. Software for safety-critical systems like the

train control system software has to deal with the hazards

identified by safety analysis in order to make the system safe,

risk-free and fail-safe. However, systematic efforts to verify

the safety of software have been rarely performed. In this

paper, we propose a framework that can automatically evaluate

the safety of train control system software. To do this, we

analyze the related international standards and investigate

existing software testing techniques. From this, we have

proposed a framework based on the McCall’s software quality

model. The proposed framework specifically identifies the

criteria corresponding to software safety in train control system

software to test the key requirements required by international

standards.

Keywords— Software safety, Software Quality, TCS (Train

Control System), Software testing, Safety evaluation.

I. INTRODUCTION

The recent developments in computing technology have
created a way for the development of more complex control
systems which have found their place in various technologies
in every domain of life. Software systems which have the
potential to cause accidents are termed as safety critical
software systems [1]. In recent times the Train Control
Systems (TCS) have also been shifted from existing
mechanical devices to computer systems and software
dependencies are increasing rapidly. This dependency over
software can be hazardous if it can cause other components to
become hazardous.

The software of the onboard controllers is becoming more
important as the automation and autonomy of the train
operation has become more important. Therefore, the influence
of the software on the entire train control system is also
increasing [2]. On-board software has become increasingly
sophisticated due to the rapid development of the
microprocessor technology, and the programming languages
used are also advanced high level languages.

The development of TCS software size and complexity is
comparatively slower than the hardware development speed,
but it is expected to gradually increase in size and complexity.
As such, from the initial mechanical and manual vehicle signal
system to the latest unmanned automatic train control system,
various controller devices have begun to be used as on-board
devices, and it has become important to verify the safety of the
software installed in these devices [3]. Such devices require
utmost care in their specification, design; implementation and
maintenance because not adhering to these may cause injuries
or loss of lives and in turn may result in financial loss.

Software safety is mainly achieved by performing safety
activities at the software design stage, which is the initial stage
of software development. Typical safety activities include
Preliminary Hazard Analysis (PHA), Hazard & Operability
Analysis (HAZOP), Fault Tree Analysis (FTA), Failure
Modes, Effects and Criticality Analysis (FMECA) [4]. While
these techniques are in operation since the beginning of

software development, additional safety checks generally are
not formalized after the development has been completed.

Recently, a model-based software development
methodology [5] that implements a software model and verifies
the safety of the software through model validation [5] is
attracting attention as a key technique for improving software
safety. However, this method remains the biggest challenge to
ensure the accuracy of the model. Development tools
supporting model-based development include Esterel Studio
and SCADE Studio from Esterel Technologies, Rhapsody from
I-Logix, Simulink and Stateflow from Mathworks Inc, Rose
Real-Time from Rational [6]. However, these tools are not
tools to verify the security of software but rather tools to
support software development. To be able to test for software
security, we need to find the qualities which shape the software
architecture. There are three qualities which find their role in
decision to shape the software architecture for safety-critical,
real-time systems are availability, reliability and robustness.

In this study, we propose a framework based on the
McCall’s software quality model that specifically identifies the
criteria corresponding to software safety of train control system
software. The significance of this study is important. The
proposed framework in this study can professionally verify the
safety of software, unlike existing software development tools.
Existing software development tools are development support
tools for reliable software development rather than tools for
evaluating safety. Also, it is designed to be developed as an
authentication tool related to software safety. Therefore, in this
study we have analyzed related international standards and
derived evaluation measures that can be automated among
various requirements required by international standards. Once
the tool is developed from this proposed framework, it is
expected that it can be used for the software safety verification.
The composition of the presented paper is as follows.

Section II gives introduction to software quality models
which provide basic quality criteria for proposed framework.
Section III explains about derived testing techniques for
software safety evaluation framework. Section IV describes
the architecture of proposed software safety assessment
framework and major testing components that can be
implemented. Section V concludes the paper.

II. SOFTWARE QUALITY MODELS

Since the last three decades software quality has received
widespread attention within the software engineering
community. There have been two remarkable models of
software quality [7]. Both McCall and Boehm have described
quality using a decompositional approach [8][9].

A. McCall’s Software Quality Model

The McCall’s model identifies and determines software
product quality by addressing three perspectives: (i) Product
Operation – It is the product's ability to be understood quickly,
working and capable of delivering the desired results by the
user. It also covers reliability, accuracy, efficiency, integrity
and ease of use. (ii) Product Revision – It is about the ability of
the product to review changes, including error detection and
correction. It also covers the maintenance, flexibility and
testability. (iii) Product transition – It is the ability of the
product to adapt to new environments, distributed processing,

International Journal of Trend in Research and Development, Volume 4(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2017
Available Online@www.ijtrd.com 33

together with the rapid change in hardware. This framework is
useful for an integrated approach to quality. In this context, we
classify software quality attributes into the hierarchy of three
levels. At the top level are the so-called "quality factors" from
the point of view of customers or users: reliability, precision
and efficiency, integrity and ease of use, maintenance and
testability, flexibility, portability, reusability and
interoperability [10]. At the second level, these are "quality
standards", which represent technical concepts. At the third
level, "quality standards" measure the attributes of software
products.

B. Framework for TCCS

McCall’s quality model is modified to address software safety

[11]. Based on it, software safety model is proposed by Ben

Swarup Medikonda et. al [12], which includes six quality

criteria described below:

Q1: System hazard analysis

Q2: Completeness of requirements

Q3: Identification of safety critical requirements

Q4: Design based on safety constraints

Q5: Run-time issues management

Q6: Safety critical testing

A set of lower level quality metrics can be derived from the

above criteria, which can be measured directly.

The evaluation of software safety is done by verifying that
the developed software satisfies the level of software safety
integrity level (SSIL) given at the time of software design.
SSIL is not defined by the software itself, but is determined to
be equal to the Safety Integrity Level (SIL) of the system to
which the software is applied. However, if it is decided to
prevent software errors from propagating to the system, it can
be set at a lower level.

SSIL is classified into 5 levels according to the risk of the
system as follows.

TABLE I. SSIL LEVELS

SSIL Level Qualitative Consequence

4 Potential for fatalities in the community

3 Potential for multiple on-site fatalities

2 Potential for major on-site injuries or a fatality

1 Potential for minor on-site injuries

0 Non-safety rating

The software development process proposed in IEC62279

[13] consists of the development process and the verification
process as shown in Figure 1. The standard provides the
requirements to be satisfied at each stage of development. The
use of automated testing tools is recommended to measure the
quality metrics while applying techniques to testing.

Fig. 1. Software Development Life Cycle in IEC61508-3

III. TESTING TECHNIQUES FOR SOFTWARE SAFETY

EVALUATION FRAMEWORK

This section introduces the selected testing techniques for
implementation in the safety evaluation framework among the
safety verification requirements defined in IEC61508 and
IEC62279 [2]. In this paper, we propose a framework that can
be implemented as an automated tool among the verification
methods.

In order to derive the testing techniques to be applied, the
six steps ST1 to ST6 are derived, which are related to the steps
related to the actions to be verified after the implementation of
the software is written or created.

TABLE II. DERIVED TESTING TECHNIQUES

Testing

Steps

Quality

Criteria

Testing Technique

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

ST1 Q6 Y Y Y Y Y Y N N N Y N N
ST2 Q5 Y Y Y Y Y Y N N N Y N N
ST3 Q3 Y Y Y N Y Y N N N N N N
ST4 Q2 N Y Y N Y Y N N N N N N
ST5 Q4 Y Y Y N Y Y Y Y N N N N
ST6 Q1 N Y Y N Y Y Y Y Y Y Y Y

T1: Performance Testing

T2: Boundary Value Analysis

T3: Equivalence Class Testing

T4: Design & Coding Standard

T5: Control Flow Testing

T6: Data Flow Testing

T7: Fagan Inspection

T8: Symbolic Execution

T9: Checklist

T10: Metrics

T11: Decision Table

T12: FTA

ST1: Software module testing stage

ST2: Software integration testing stage

ST3: Integration stage between hardware and software

ST4: Software validation stage

ST5: Software change validation stage

ST6: Software evaluation stage

Each step extracts information that includes measures for
software evaluation from the software development stages,

which is directly related to the train control system software
which requires, automated testing during major software
development stages. Major software testing techniques to be
applied are defined according to the level of safety integrity of
the software and quality criteria incorporated in that stage.

Table 1 shows the 12 core testing techniques derived in this
way. Table 1 specifies the applied quality criteria and test
techniques that can be applied to each stage of software

Coding

Requirement

Identification

User

Specification

Software

Specification

High Level

Design

Detailed Design

Software

Assessment

Unit Testing

Integration

Testing

H/W & S/W

Integration

Testing

S/W Validation

International Journal of Trend in Research and Development, Volume 4(3), ISSN: 2394-9333

www.ijtrd.com

IJTRD | May-Jun 2017
Available Online@www.ijtrd.com 34

development. For example, in software module testing stage,
safety critical testing is the criteria for quality and for this
Performance Testing, Boundary Value Analysis, Equivalence
Class Testing, Design & Coding Standard, Control Flow
Testing, Data Flow Testing are the derived testing techniques.

The performance test is to perform the hardware processing
capability and the resources required in software
implementation which is performed in the form of dynamic
testing. Control and data flow testing tracks the control flow
and data flow generated by the software to test whether unused
code or data areas exists or not. Applying these derived test
techniques provide the software test metrics which can be
measured directly to be used in generation of automatic test
data.

IV. ARCHITECTURE OF SOFTWARE SAFETY ASSESSMENT

FRAMEWORK

This section describes the architectural design of the
software safety evaluation framework. The train control system
software safety evaluation technique consists of an automatic
test case generator, an automatic test execution and monitor,
and a target testing agent. Since the train control system has
characteristics of the embedded control system, the structure of
the S/W test tool to be tested and monitored through the testing
agent program of the actual target board in which the
application software is ported should be designed. Therefore,
the test tool converts the safety analysis data of the evaluation
target software by using the source code and the input data
conversion module, receives the input data, and generates the
test data automatically based on the input source code and the
safety analysis data. Generate test data and scenarios using
generation module. The generated test cases are automatically
executed and tested, and the test results are analyzed by the
monitoring module and the target testing agent, and the result
is stored as a screen and a file. Figure 2 shows the use of the
proposed safety testing framework. The test framework accepts
the source-code and input safety analysis data of evaluation
target software. Using the input data conversion module it
generates the test data automatically based on the input source
code and the safety analysis data.

Fig. 2. Train control software safety evaluation tester

The main functional definition of the testing framework is as

follows.

 Code Analyzer: Generates function information, type
information, control flow, and call information between
functions through program analysis.

 Create test scenarios: Automatically generate test
scenarios. It also allows users to create additional test
scenarios.

 Test data generation: Appropriate test cases are generated
based on selected test criterion.

 Driver creation: The driver that connects the test target
code to the test engine and the program to be tested are
created.

 Execution: Performs tests, summarizes test coverage,
breakdown of sections, and test results. Provide the location
of the error and have the ability to report detailed results to
the user by test case.

 Test report generation: Generates reports based on the
options for all test information and results.

CONCLUSION

In this paper, a safety evaluation framework has been
proposed for train control system software. The proposed
evaluation framework extends the existing automated software
test tool and uses the results of the safety activity derived from
the software development cycle as inputs to test the evaluation
items required by the standard in a dynamic test form. It
includes the core evaluation items required by the international
standard and makes it available during the software
development lifecycle. We also added the ability to
continuously verify the safety by using the results of the safety
activities performed at the software design stage as input to the
testing tool.

It is expected that if the embedded software test tool with
the proposed structure is developed, it will help to evaluate the
software safety of the train control system.

References

[1] D. L. Parnas, A. J. van Schouwen, and S. P. Kwan, “Evaluation of safety-
critical software”, Commun. ACM vol. 33, pp. 636-648, 1990.

[2] J.G. Hwang, H.J. Jo & H.S. Kim, "Design of automatic testing tool for
railway signalling systems software safety assessment", WIT
Transactions on Information and Communication Technologies, vol. 39,
pp. 513 - 522, 2008.

[3] A. Zimmermann, G. Hommel, "A train control system case study in
model-based real time system design", Proc. International Workshop on
Parallel and Distributed Real-Time Systems (WPDRTS03), Nice, France,
2003.

[4] H.C. Liu, L. Liu, Q.H. Bian, Q.L. Lin, N. Dong, & P.C. Xu, "Failure
mode and effects analysis using fuzzy evidential reasoning approach and
grey theory", Expert Systems with Applications, vol. 38, pp. 4403-4415,
2011.

[5] R. France and B. Rumpe, "Model-driven development of complex
systems: A research roadmap", Future of Software Engineering 2007,
IEEE-CS Press, pp. 37-54, 2007.

[6] D. Harel, "Statecharts: a visual formalism for complex systems", Science
of Computer Programming, vol. 8, pp. 231–274, 1987.

[7] J.P. Cavano & J.A. McCall, "A framework for the measurement of
software quality", In ACM SIGMETRICS Performance Evaluation
Review, vol. 7, No. 3-4, pp. 133-139, 1978.

[8] F. Norman, and J. Bieman, "Software metrics: a rigorous and practical
approach", CRC Press, 2014.

[9] A. Rawashdeh & B. Matalkah, "A new software quality model for
evaluating COTS components", Journal of Computer Science, vol.2, no.
4, pp. 373-381, 2006.

[10] J. A. McCall, "Factors in Software Quality: Preliminary Handbook on
Software Quality for an Acquisiton Manager", Information Systems
Programs, General Electric Company, 1977.

[11] R. Singh, “A Systematic Approach to Software Safety”, Proceedings of
Sixth Asia Pacific Software Engineering Conference (APSEC),
Takamatsu, Japan ,1999.

[12] M.B. Swarup & P.S. Ramaiah, "A software safety model for safety
critical applications", International Journal of Software Engineering and
Its Applications, vol. 3, no. 4, pp. 21-32, 2009.

[13] K.D. Shim & J.W. Lee, "Software Quality Assurance Activities of
Automatic Train Control System to meet Requirements of the IEC 62279
Standard", Journal of the Korean society for railway, vol. 13, no. 4, pp.
412-418, 2010.

Safety Factors

System Hazard

Analysis

Completeness of

requirements

Identifying

safety critical

requirements

Design based
on safety

constraints

Run time

issues

management

Safety critical

testing

Metrics Automatic test

data generation

Automatic test

scenario

generation

Execution of

Target Test

Target

monitoring Automatic test report generation

Test

Repository
Code Analyzer

Train

control s/w

source

