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Abstract: In present investigation MATLAB code for structural 

analysis of 2-dimension linear elastic isotropic structures 

subjected to static and self-weight loading conditions is been 

presented. In this paper implementation of MATLAB code on 

two structures i.e. Cantilever beam and Bolkow Blohm Beam is 

done to show the application of code. The meshing of the 2-

dimension structure is done with quadrilateral 4-node element, for 

analysis of self-weight loading condition the weight of an element 

is equally transferred on each node in downward direction and 

results obtained through MATLAB code is been compared with 

ANSYS software.    

Keywords— Finite element method; self-weight; MATLAB; 4-

node element 

I. INTRODUCTION 

The finite element method (Hutton 2004; Chandrupatla and 

Belegunda 2004; Khennane 2013) represent is one of the most 

significant achievements in the field of computational methods in 

the last century. Historically, it has its roots in the analysis of 

weight-critical framed aerospace structures. These framed 

structures were treated as an assemblage of one-dimensional 

members, for which the exact solutions to the differential 

equations for each member were well known. These solutions 

were cast in the form of a matrix relationship between the forces 

and displacements at the ends of the member. Hence, the method 

was initially termed matrix analysis of structures. Later, it was 

extended to include the analysis of continuum structures. Since 

continuum structures have complex geometries, they had to be 

subdivided into simple components or “elements” interconnected 

at nodes. It was at this stage in the development of the method 

that the term “finite element” appeared. However, unlike framed 

structures, closed form solutions to the differential equations 

governing the behavior of continuum elements were not 

available. Energy principles such as the theorem of virtual work 

or the principle of minimum potential energy, which were well 

known, combined with a piece-wise polynomial interpolation of 

the unknown displacement, were used to establish the matrix 

relationship between the forces and the interpolated 

displacements at the nodes numerically. In the late 1960s, when 

the method was recognized as being equivalent to a minimization 

process, it was reformulated in the form of weighted residuals and 

variational calculus and expanded to the simulation of 

nonstructural problems in fluids, thermomechanics and 

electromagnetics.  

II. LINEAR QUADRILATERAL 4-NODE ELEMENT 

In the quadrilateral family of elements, except for the square or 

the rectangle, it is impossible to construct the shape functions 

directly in terms of x and y. The only way to construct these 

functions is to use a reference element, which is a square of side 2 

(units) as represented in Figure 1. 

 
Figure 1: Geometrical transformation of 4-node element 

(Khennane 2013) 

To define the geometrical transformation, we will assume that the 

coordinates (x, y) of an arbitrary point of the parent element are 

the unknown functions defined over the domain represented by 

the reference element in its local coordinate system (ξ, η). Notice 

that both the variables x and y belong to the linear class of 

functions since they are continuous and their first derivatives are 

constant equal to 1. Therefore, we start by constructing a general 

approximation for x in terms of ξ and η. 

x = α1 + α2ξ + α3η + α4ξη                             (1) 

 

𝑥 = [1 𝜉 𝜂 𝜉𝜂]  

α1

α2
α3

α4

                     (2) 

Then, we will transform the general approximation, equation (2), 

to a nodal approximation by using the nodal values x1, x2, x3, and 

x4 respectively at nodes 1, 2, 3, and 4. Notice also that the couple 

(ξ, η) takes on the values of (−1, −1), (1, −1), (1, 1), and (−1, 1) 

respectively at nodes 1, 2, 3, and 4. It follows 

x1 = α1 − α2 − α3 + α4 

x2 = α1 + α2 − α3 − α4 

x3 = α1 + α2 + α3 + α4 

x4 = α1 − α2 + α3 − α4 

which, when rewritten in a matrix form, yields 

 

𝑥1

𝑥2
𝑥3

𝑥4

 =  

1 −1 −1    1
1    1 −1 −1
1    1    1    1
1 −1 −1 −1

  

α1

α2
α3

α4

                    (3) 

or in a more compact form as 
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 𝑋 =  𝐴  α                                    (4) 

The parameters αi can be obtained easily by solving the equation 

(3). It can be noticed that the columns of the matrix [A] are 

actually orthogonal vectors of norm 4. Hence, the inverse of the 

matrix [A] is obtained as 

 𝐴 −1 = 1/4 𝐴 𝑇 = 1/4  

1 −1 −1    1
1    1 −1 −1
1    1    1    1
1 −1 −1 −1

                (5) 

and the parameters αi as 

 

α1

α2
α3

α4

 = 1/4  

1 −1 −1    1
1    1 −1 −1
1    1    1    1
1 −1 −1 −1

  

𝑥1

𝑥2
𝑥3

𝑥4

                (6) 

Substituting for the parameters αi in equation (2) yields 

𝑥(ξ, η) = 1/4[1 𝜉 𝜂 𝜉𝜂]  

1 −1 −1    1
1    1 −1 −1
1    1    1    1
1 −1 −1 −1

  

𝑥1

𝑥2
𝑥3

𝑥4

  (7) 

Expanding and rearranging equation (7) leads to 

x(ξ, η) = N1(ξ, η)x1 + N2(ξ, η)x2 + N3(ξ, η)x3 + N4(ξ, η)x4 (8) 

N1(ξ, η) = 0.25(1 − ξ − η + ξη) 

N2(ξ, η) = 0.25(1 + ξ − η − ξη) 

N3(ξ, η) = 0.25(1 + ξ + η + ξη) 

N4(ξ, η) = 0.25(1 − ξ + η − ξη) 

Following exactly the same process for the variable y, we obtain 

y(ξ, η) = N1(ξ, η)y1 + N2(ξ, η)y2 + N3(ξ, η)y3 + N4(ξ, η)y4        (9) 

Expressions (3) and (5) represent well and truly a linear 

geometrical transformation. The center of the reference square is 

given by (ξ, η) = (0, 0). 

III. FINITE ELEMENT FORMULATION FOR PLANE 

STRESS PROBLEMS 

The stress–strain relationships for plane stress given as 

 

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

 =
𝐸

1−µ2  

1 µ 0
µ 1 0

0 0
(1−µ)

2

  

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

                       (10) 

 𝜎 =  𝐷  𝜀                                  (11) 

Whether it is a state of plane stress or plane strain, a material 

point can only move in the directions x and y. Therefore, the two 

displacement variables that play a role are u(x, y) and v(x,y). The 

infinitesimal strain displacements relations for both theories are 

the same and they are given as 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
                    (12) 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
                                (13) 

𝜀𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
                             (14) 

These relations can be written in a matrix form as 

 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

 =

 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑥  
 
 
 
 

 
𝑢
𝑣
                          (15) 

or in a more compact form as 

 𝜀 =  𝐿 𝑈                              (16) 

Where [L] is a linear differential operator. Let us consider a finite 

element approximation for the unknown functions u and v. For an 

element having n nodes, the unknown displacements are 

interpolated using nodal approximations as 

u = N1u1 + N2u2 +· · ·+Nnun  

v = N1v1 + N2v2 +· · ·+Nnvn  

which, when written in a matrix form, yields 

 
𝑢
𝑣
 =  

𝑁1 0 𝑁2 0 . . . 𝑁𝑛 0

0 𝑁1 0 𝑁2 . . . 0 𝑁𝑛
 

 
  
 

  
 
𝑢1

𝑣1
𝑢2

𝑣2...
𝑢𝑛
𝑣𝑛 
  
 

  
 

             (17) 

or simply as 

{U} = [N]{a}                          (18) 

with {a} = {u1, v1, u2, v2, . . . , un, vn} being the vector of nodal 

displacements. The number and the form of the shape functions 

depend on the element used. 

Substituting for {U} using equation (15), the strain displacement 

equation (16) become 

{ε} = [B]{a}                      (19) 

where 

 𝐵 =

 
 
 
 
 
𝜕𝑁1

𝜕
0

𝜕𝑁2

𝜕
0 . . . 𝜕𝑁𝑛

𝜕
0

0
𝜕𝑁1

𝜕
0

𝜕𝑁2

𝜕
. . . 0

𝜕𝑁𝑛

𝜕
𝜕𝑁1

𝜕

𝜕𝑁1

𝜕

𝜕𝑁2

𝜕

𝜕𝑁2

𝜕
. . . 𝜕𝑁𝑛

𝜕

𝜕𝑁𝑛

𝜕  
 
 
 
 

                          

                                      (20) 

The matrix [B] is called the strain matrix; it relates the nodal 

displacements to the strains. It is formed by the partial derivatives 

of the shape functions Ni(x, y). 

IV. DISPLACEMENT FIELD  

The displacement field over the element is approximated as 

u = N1u1 + N2u2 + N3u3 + N4u4 

v = N1v1 + N2v2 + N3v3 + N4v4 

or in a matrix form as 

 
𝑢
𝑣
 =  

𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0

0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4
 

 
 
 
 

 
 
 
𝑢1

𝑣1
𝑢2

𝑣2
𝑢3

𝑣3
𝑢4

𝑣4 
 
 
 

 
 
 

                 (21) 
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Figure 2: Linear 4-node quadrilateral element (Khennane 2013) 

or more compactly as 

{U} = [N]{a}                                    (22) 

The element is isoparametric, therefore the shape functions Ni(ξ, 

η) also define the geometrical transformation between the 

reference and the parent element. The coordinates x and y of any 

point of the parent element are given as 

x = N1x1 + N2x2 + N3x3 + N4x4                  (23) 

y = N1y1 + N2y2 + N3y3 + N4y4                   (24) 

Subsequently, we will need to express the derivatives of a 

function in x and y coordinates in terms of its derivatives in ξ and 

η coordinates. This is done as follows  

𝜕𝑁

𝜕ξ
=

𝜕𝑁

𝜕x

𝜕𝑥

𝜕ξ
+

𝜕𝑁

𝜕𝑦

𝜕𝑦

𝜕ξ
                                 (25) 

𝜕𝑁

𝜕η
=

𝜕𝑁

𝜕x

𝜕𝑥

𝜕η
+

𝜕𝑁

𝜕𝑦

𝜕𝑦

𝜕η
                          (26) 

 

𝜕𝑁

𝜕ξ

𝜕𝑁

𝜕η

 = 𝐽  

𝜕𝑁

𝜕x
𝜕𝑁

𝜕𝑦

                                     (27) 

Where J is Jacobian transformation matrix which is given as 

𝐽 =  

𝜕𝑥

𝜕ξ

𝜕𝑦

𝜕ξ

𝜕𝑥

𝜕η

𝜕𝑦

𝜕η

 =  
 

𝜕𝑁𝑖

𝜕ξ
𝑥𝑖

4
𝑖=1  

𝜕𝑁𝑖

𝜕ξ
𝑦𝑖

4
𝑖=1

 
𝜕𝑁𝑖

𝜕η
𝑥𝑖

4
𝑖=1  

𝜕𝑁𝑖

𝜕η
𝑦𝑖

4
𝑖=1

             (28a) 

After deriving and rearranging, the Jacobian is written in the form 

of a product of two matrices: 

 𝐽 = 1/4  
−(1 − η) (1 − η) (1 + η) −(1 + η)

−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ)
  

𝑥1 𝑦1

𝑥2 𝑦2
𝑥3

𝑥4

𝑦3

𝑦4

      

 

               (28b) 

A. Strain Matrix 

Substituting for the displacements u and v in equation (16) using 

equation (22), the strain vector is obtained as 

 𝜀 =  𝐵  𝑎                                    (29) 

 𝐵    =

 
 
 
 
 
 
 
𝜕𝑁1

𝜕𝑥
0

𝜕𝑁2

𝜕𝑥
         0    

𝜕𝑁3

𝜕𝑥
   0        

𝜕𝑁4  

𝜕𝑥
   0

0
𝜕𝑁1

𝜕𝑦
0         

𝜕𝑁2

𝜕𝑦
  0        

𝜕𝑁3

𝜕𝑥
     0  

𝜕𝑁4

𝜕𝑦
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑦
     

𝜕𝑁2

𝜕𝑥

𝜕𝑁3

𝜕𝑥

𝜕𝑁3

𝜕𝑥
     
𝜕𝑁4

𝜕𝑦

𝜕𝑁4

𝜕𝑥  
 
 
 
 
 
 

 

To evaluate the matrix [B], it is necessary to relate the partial 

derivatives in the (x, y) coordinates to the local coordinates (ξ, η). 

The derivative of the shape functions can be written as follows 

using the chain rule: 

𝜕𝑁𝑖

𝜕ξ
=

𝜕𝑁𝑖

𝜕x

𝜕𝑥

𝜕ξ
+

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑦

𝜕ξ
                            (30) 

𝜕𝑁𝑖

𝜕η
=

𝜕𝑁𝑖

𝜕x

𝜕𝑥

𝜕η
+

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑦

𝜕η
                            (31) 

The derivatives of the shape functions in the (x, y) system is 

obtained by inversing the previous equation: 

 

𝜕𝑁𝑖

𝜕x
𝜕𝑁𝑖

𝜕𝑦

 =  𝐽 −1  

𝜕𝑥

𝜕ξ

𝜕𝑦

𝜕ξ

𝜕𝑥

𝜕η

𝜕𝑦

𝜕η

                          (32) 

B. Stiffness Matrix 

The stiffness matrix for the quadrilateral element can be derived 

from the strain energy in the body, given by 

𝑈 =
1

2
 𝜎𝑇𝜀𝑑𝑣                                                            (33) 

𝑈 =  
1

2
𝑡𝑒  𝜎

𝑇𝜀𝑑𝐴                                                      (34) 

 𝜎 =  𝐷  𝐵  𝑎                                                           (35) 
 𝜀 =  𝐵  𝑎                                                                 (36) 

where te is the thickness of element e 

𝑈 =  
1

2
𝑡𝑒    𝑎  𝐵 𝑇 𝐷  𝐵  𝑎 𝑑𝑥𝑑𝑦

1

−1

1

−1
              (37) 

𝑈 =  
1

2
𝑡𝑒    𝑎  𝐵 𝑇 𝐷  𝐵  𝑎 𝑑𝑒𝑡𝐽𝑑ξ𝑑η

1

−1

1

−1
      (38) 

=
1

2
 𝑎𝑇𝑘𝑎                                   (39) 

where 

𝑘 = 𝑡𝑒    𝐵 𝑇 𝐷  𝐵 𝑑𝑒𝑡𝐽𝑑ξ𝑑η
1

−1

1

−1
                       (40) 

is the element stiffness matrix of dimension (8x8). 

C. Numerical Integration 

The Gaussian quadrature approach is used for integration of 

quadrilateral element. Consider the n-point approximation 

𝐼 =  𝑓 ξ 𝑑ξ ≈ w1f ξ
1
 +

1

−1
w2f ξ

2
 + ⋯ . +wn f(ξ

n
) (41) 

Where w1,w2,….,and wn are the weights and ξ1,  ξ2, ….,  and ξn 

are the sampling points or gauss points. The idea behind Gaussian 

quadrature is to select the n Gauss points and n weight such that 

equation 3.51 provides an exact answer or polynomials f(ξ) of as 

large a degree as possible. In other words, the idea is that if the n-

point integration formula is exact for all polynomial. In our work 

we have two variables so we used two point formula such as 

 𝑓(ξ)𝑑ξ ≈
1

−1
w1f ξ

1
 + w2f ξ

2
                        (42) 

We have four parameters to choose: w1, w2, ξ1 and ξ2. We can 

therefore accept the formula in equation (42) to be exact for a 

cubic polynomial. Thus choosing f(ξ)=ao+a1 ξ+a2 ξ
2
+a3 ξ

3
 yields 

𝐸𝑟𝑟𝑜𝑟 =   (ao + a1 ξ + a2 ξ2 + a3ξ
3)

1

−1
 −  w1f ξ

1
 +

w2fξ2                   (42) 

Requiring zero error yields 

w1+w2=2 

w1 ξ1+w2 ξ2=0 

w1 ξ1
2
+w2 ξ2

2
=2/3 

w1 ξ1
3
+w2 ξ2

3
=0 
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These nonlinear equations have the unique solution 

w1 =w2 =1                   -ξ1 =ξ2=1/ 3=0.57735022691….. 

These values are directly used in the finite element analysis for 4-

nodes quadrilateral element. 

V. MATLAB CODE IMPLEMENTATION 

In present investigation a compact MATLAB code for structural 

analysis of cantilever beam and Messerschmitt Bolkow Blohm 

Beam subjected to static and self-weight loading has been 

performed. The Matlab code (see the Appendix), is built up as a 

standard topology optimization code. The main program is called 

from the Matlab prompt by the line  

function FEM (Nx,Ny,CANTILEVER,MMB,GRAVITY) 

Where nelx and nely are number of elements in the horizontal and 

vertical directions, respectively. CANTILEVER and MBB is used 

for analysis of cantilever beam and Messerschmitt Bolkow 

Blohm beam respectively. GRAVITY is used when structure is 

analyzed under self weight. Other variables as well as boundary 

conditions are defined in the MATLAB code itself and can be 

edited if needed. The Compete MATLAB code for static and self-

weight loading conditions are described in appendix. The 

description of MATLAB code (cantilever beam under static 

loading meshing by 4-node elements) written is as follow: 

 Nodal coordinate generation ( line 4-14) 

 Nodal connectivity generation ( line 15-28) 

 Input value used in FEM ( line 29-42) 

 Calculating stiffness matrix of body  ( line 43-74) 

 Defining  boundary condition force applied and 

calculating displacement of body   ( line 75-119) 

 Plotting final result obtained ( line 120-169) 

 

1. For structure analysis of cantilever beam under static loading 

condition as shown in Figure 4 (b)  input  

FEM(32,20,1,0,0) 

2. For structure analysis of cantilever beam under self-weight 

loading condition as shown in Figure 5 (b) input 

FEM(32,20,0,0,11) 

3. For structure analysis of MBB beam under static loading 

condition as shown in Figure 6 (b) input 

FEM(60,20,0,1,0) 

4. For structure analysis of MBB beam under self-weight loading 

condition as shown in Figure 7 (b) input   

FEM(60,20,0,0,12) 

 

(a)                                                                                                                     (b) 

Figure 3 Geometry and Boundary Conditions (a) cantilever beam (b) MBB beam 

Table 1: Maximum deformation in x and y directions under point load 

CANTILEVER BEAM  MBB BEAM  

ANSYS MATLAB ANSYS MATLAB 

CANTILEVER BEAM  CANTILEVER BEAM MBB BEAM MBB BEAM 

UX 11.208 mm UX 30.545 mm UX 30.545 mm UX 30.545 mm 

UY 27.471 mm UY 125.88 mm UY 125.88 mm UY 125.88 mm 

MATERIAL PROPERTIES                                            E =1    ν =0.3 

 
(a)  DISPLACEMENT UX                                                             DISPLACEMENT UY 

F 

F 

60 mm  

20 mm  

20 mm 
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(b) DISPLACEMENT UX                                                             DISPLACEMENT UY 

Figure 4: Deformation of catiliver beam under point load (a) ANSYS (b) MATLAB 

 
(a)  DISPLACEMENT UX                                                             DISPLACEMENT UY 

 
(b)  DISPLACEMENT UX                                                             DISPLACEMENT UY 

Figure 5: Deformation of MBB beam under point load (a) ANSYS (b) MATLAB 

Table 1: Maximum deformation in x and y directions self-weight load 

CANTILEVER BEAM  MBB BEAM  

ANSYS MATLAB ANSYS MATLAB 

CANTILEVER BEAM  CANTILEVER BEAM MBB BEAM MBB BEAM 

UX 16450 UX 16450 UX 2.5849×105 UX 2.5849×105 

UY 54401 UY 54401 UY 9.4256×105 UY 9.4256×105 

MATERIAL PROPERTIES                ρ =1   g =10    E =1    ν =0.3 

 
(a)  DISPLACEMENT UX                                                             DISPLACEMENT UY 
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(b) DISPLACEMENT UX                                                             DISPLACEMENT UY 

Figure 6: Deformation of cantiliver beam under self-weight load (a) ANSYS (b) MATLAB 

 

 
(a) DISPLACEMENT UX                                                             DISPLACEMENT UY 

 
(b)  DISPLACEMENT UX                                                             DISPLACEMENT UY 

Figure 7: Deformation of MBB beam under self-weight load (a) ANSYS (b) MATLAB 

 

CONCLUSION 

In present investigation MATLAB code for structural analysis 

of 2-D linear elastic isotropic structures i.e. cantilever beam and 

MBB beam is presented. For both the beam maximum 

displacement obtained in x & y directions with MATLAB code 

are been compared with the ANSYS and from above result we 

conclude that the accuracy of MATLAB code is same as that of 

ANSYS software for structural analysis of above numerical 

examples (cantilever beam and MBB beam). Another 

application of FEM MATLAB code is for self-weight analysis 

in which weight of the structure also include in structure 

analysis of structures which also equally efficient to ANSYS 

software. 
APPENDIX 

1. function FEM (Nx,Ny,CANTILEVER,MMB,GRAVITY) 

2. nelx=Nx; 

3. nely=Ny; 

% Input data for nodal coordinate values 

4. coordinates=zeros((nely+1)*(nelx+1),2); 

5. y=[nely:-1:0]; 

6. x=[0:1:nelx]; 

7. n=0; 

8. for i=1:(nelx+1) 

9. for j=1:(nely+1) 

10. coordinates((n+j),1)=x(i); 

11. coordinates((n+j),2)=y(j); 

12. end 

13. n=n+(nely+1); 

14. end 

% Input data for nodal connectivity for each element 

15. nodes=zeros(nelx*nely,4); 

16. B=[1:nely]; 

17. t=[2:(nely+1)]; 

18. m=[0:nely:nely*(nelx-1)]; 

19. n=0; 

20. for j=1:nelx 

21. for i=1:nely 

22. nodes((i+m(j)),1)=B(i)+n; 

23. nodes((i+m(j)),2)=B(i)+n+(nely+1); 

24. nodes((i+m(j)),3)=t(i)+n+(nely+1); 

25. nodes((i+m(j)),4)=t(i)+n; 

26. end 

27. n=n+(nely+1); 

28. end 

% Input data  

29. nel = length(nodes);                   

30. nnel=4;                                 

31. ndof=2;                                 

32. nnode = length(coordinates) ; 

33.  sdof=nnode*ndof;        
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34. edof=nnel*ndof;          

35. stiffness = zeros(sdof,sdof);   

36. displacement=zeros(sdof,1); 

37. force = zeros(sdof,1); 

38. E = 2.1*10^9;                         

39. density=7850;                         

40. gravity=9.81; 

41. F=(density*gravity); 

42. nu = 0.3;                               % Poisson's ratio 

%  Computation of element matrices and vectors and their assembly 

43. D = E/(1-nu^2)*[1 nu 0 ; nu 1 0; 0 0 (1-nu)/2] ;   

44. Gausspointx=[-1 1 1 -1]/sqrt(3); 

45. Gausspointy=[1 1 -1 -1]/sqrt(3); 

46. Gaussweight=[1 1 1 1]; 

47. for iel=1:nel           

48. for i=1:nnel 

49. nd(i)=nodes(iel,i);       

50. xx(i)=coordinates(nd(i),1);     

51. yy(i)=coordinates(nd(i),2);     

52. end 

53. K = zeros(edof,edof);       

54. for int=1:4 

55. xi = Gausspointx(int);                   

56. wtx = Gaussweight(int);                

57. eta = Gausspointy(int);                  

58. wty = Gaussweight(int) ;                   

% Compute isoparametric four-node Quadrilateral shape   functions and 

their derivatives 

59. j=0.25*[-(1-eta)  (1-eta)   (1+eta)  -(1+eta);... 

               (1-xi)    (1+xi)   -(1+xi)   -(1-xi)]; 

60. J=j*[xx;yy]'; 

61. A=[J(2,2) -J(1,2) 0 0; 

0 0 -J(2,1) J(1,1); 

-J(2,1) J(1,1) J(2,2) -J(1,2)]*(1/det(J)); 

62. G=(1/4)*[-(1-eta)    0   (1-eta)   0  (1+eta)   0 -(1+eta)   0; 

               (1-xi)    0    (1+xi)   0   -(1+xi)   0    -(1-xi)   0; 

                 0      -(1-eta)     0    (1-eta)  0 (1+eta) 0 -(1+eta); 

                 0       (1-xi)       0    (1+xi)   0 -(1+xi)  0 -(1-xi)]; 

63. B=A*G; 

64. K=K+B'*D*B*wtx*wty*det(J); 

65. end 

66. EDOF = [2*nd(1)-1; 2*nd(1); 2*nd(2)-1; 2*nd(2); 2*nd(3)-1; 

2*nd(3); 2*nd(4)-1; 2*nd(4)]; 

67. stiffness(EDOF,EDOF)=stiffness(EDOF,EDOF)+K; 

68. end 

% constrain, boundary condition and force vector 

%-----------------------external force----------------------------- 

69. if (CANTILEVER==1) 

70. force(2*(nelx+1)*(nely+1)) = -1 ; 

71. displacement((2*(nely+1)+1):sdof) = 

stiffness((2*(nely+1)+1):sdof,(2*(nely+1)+1):sdof)\force((2*(nely

+1)+1):sdof); 

72. end 

%-----------------------gravity force-------------------------------- 

73. if (MMB==1) 

74. force(2,1) = -1; 

75. fixeddofs   = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]); 

76. alldofs     = [1:2*(nely+1)*(nelx+1)]; 

77. freedofs    = setdiff(alldofs,fixeddofs); 

78. displacement(freedofs,:) = stiffness(freedofs,freedofs) \ 

force(freedofs,:);       

79. displacement(fixeddofs,:)= 0; 

80. end 

%-----------------------gravity force------------------------------- 

81. if (GRAVITY>0) 

82. W=[1 (nely+1) ((nely+1)*(nelx+1)-nely) (nely+1)*(nelx+1)]; 

83. w1=[2:nely]; 

84. w2=[(nely+2):(nely+1):(nely+1)*(nelx)]; 

85. w3=[(2*(nely+1)):(nely+1):(nely+1)*(nelx)]; 

86. w4=[((nely+1)*(nelx)+2):((nely+1)*(nelx+1)-1)]; 

87. w5=[1:(nely+1)*(nelx+1)]; 

88. W1=union(w1,w2); 

89. W2=union(w3,w4); 

90. W3=union(W1,W2); 

91. W4=setdiff(w5,W3); 

92. W5=setdiff(W4,W); 

93. force(2*W')=-F/4; 

94. force(2*W3')=-F/2; 

95. force(2*W5')=-F; 

96. if (GRAVITY==11) 

97. displacement((2*(nely+1)+1):sdof) = 

stiffness((2*(nely+1)+1):sdof,(2*(nely+1)+1):sdof)\force((2*(nely

+1)+1):sdof); 

98. end 

99. if (GRAVITY==12) 

100. fixeddofs   = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]); 

101. alldofs     = [1:2*(nely+1)*(nelx+1)]; 

102. freedofs    = setdiff(alldofs,fixeddofs); 

103. displacement(freedofs,:) = stiffness(freedofs,freedofs) \ 

force(freedofs,:);       

104. displacement(fixeddofs,:)= 0; 

105. end 

106. end 

% solution 

107. UX = displacement(1:2:sdof) ; 

108. UY = displacement(2:2:sdof)  

109. disp('The maximum displacement UX') 

110. max(abs(UX)) 

111. disp('The maximum displacement UY') 

112. max(abs(UY))      

113. for iel=1:nel    

114.      for i=1:nnel 

 

115.      nd(i)=nodes(iel,i);              X(i,iel)=coordinates(nd(i),1);         

Y(i,iel)=coordinates(nd(i),2);     

116.      end    

117.      profile1(:,iel) = -UX(nd') ;          

118.      profile2(:,iel) = -UY(nd') ;   

119. end 

120. % Plotting the FEM mesh and profile of the given component 

121.      f3 = figure ; 

122.      set(f3,'name','Postprocessing','numbertitle','off') ; 

123.      plot(X,Y,'k') 

124.      fill(X,Y,profile1) 

125.      axis off ; 

126.       cbar = colorbar; 

127.      set(figure,'name','Postprocessing','numbertitle','off') ; 

128.      plot(X,Y,'k') 

129.      fill(X,Y,profile2) 

130.      axis off ; 

131.      cbar = colorbar; 

References 

[1] Chandrupatla, T. R. and Belegunda, A. D. 2004. 

Introduction to finite element in engineering, Prentice hall 

upper Inc. 

[2] Hutton, D. V. 2004. Fundamental of finite element analysis, 

The McGraw-Hill companies 

[3] Khennane, A. 2013. Introduction to finite element analysis 

using MATLAB and Abaqus, Taylor & Francis Group, 

LLC 

[4] Ain, J.E 1982. Application and implementation of finite 

element methods, London:Academic.  

[5] Baker, A.J. and Pepper D.W., 1988. Finite element analysis 

on microcomputers. New York:McGraw-Hill. 



International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333 

www.ijtrd.com 

IJTRD | Jan-Feb 2017 
Available Online@www.ijtrd.com     323 

[6] Lepi, S.M., 1998. Practical guide to finite elements: a solid 

mechanics approach, Marcel Dekker. 

[7] Smith I.M. and Griffiths D.V. Programming the Finite 

Element Method, 2nd edn. Wiley, Chichester, U.K., 1988. 

[8] Timoshenko S. and Goodier J. Theory of Elasticity, 3rd 

edn. McGraw-Hill, New York, 1970. 

[9] Timoshenko S. and Woinowsky-Krieger S. Theory of Plates 

and Shells. McGraw-Hill, New York, 1959. 

[10] Zienkiewicz O.C. The Finite Element Method, 3rd edn. 

McGraw-Hill, York, London, 1977. 
[11] Cook R.D. Finite Element Modeling for Stress Analysis. 

Wiley, New York, 1995. 

[12] Kwon Y.W. and Bang H. The Finite Element Method Using 

Matlab, 2nd edn. CRC Press, London, U.K., 2000. 

[13] Logan D.L. A First Course in the Finite Element Method 

Using Algor, 2nd edn. Brooks/Cole Thompson Learning, 

Pacific Groove, CA, 2001. 

[14] Mase G.E. Schaum’s Outline Series: Theory and Problems 

of Continuum Mechanics. McGraw-Hill, New York, 1970. 

[15] McGuire M., Gallagher G.H., and Ziemian R.D. Matrix 

Structural Analysis, 2nd edn. Wiley, New York, 2000. 

[16] Meek J.L. Computer Methods in Structural Analysis. E & 

FN SPON, London, U.K., 1991. 

[17] Reddy J.N. An Introduction to the Finite Element Method, 

3rd edn. McGraw-Hill, New York, 2006. 

[18] Saada A.S. Elasticity: Theory and Applications, 2nd edn. 

Krieger Publishing, Melbourne, FL, 1993. 

 
 


