
International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Jan-Feb 2017
Available Online@www.ijtrd.com 316

MATLAB Code for Structural Analysis of 2-D

Structures Subjected to Static and Self-Weight Loading

Conditions
Naman Jain

Department Of Mechanical Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, India

Abstract: In present investigation MATLAB code for structural

analysis of 2-dimension linear elastic isotropic structures

subjected to static and self-weight loading conditions is been

presented. In this paper implementation of MATLAB code on

two structures i.e. Cantilever beam and Bolkow Blohm Beam is

done to show the application of code. The meshing of the 2-

dimension structure is done with quadrilateral 4-node element, for

analysis of self-weight loading condition the weight of an element

is equally transferred on each node in downward direction and

results obtained through MATLAB code is been compared with

ANSYS software.

Keywords— Finite element method; self-weight; MATLAB; 4-

node element

I. INTRODUCTION

The finite element method (Hutton 2004; Chandrupatla and

Belegunda 2004; Khennane 2013) represent is one of the most

significant achievements in the field of computational methods in

the last century. Historically, it has its roots in the analysis of

weight-critical framed aerospace structures. These framed

structures were treated as an assemblage of one-dimensional

members, for which the exact solutions to the differential

equations for each member were well known. These solutions

were cast in the form of a matrix relationship between the forces

and displacements at the ends of the member. Hence, the method

was initially termed matrix analysis of structures. Later, it was

extended to include the analysis of continuum structures. Since

continuum structures have complex geometries, they had to be

subdivided into simple components or “elements” interconnected

at nodes. It was at this stage in the development of the method

that the term “finite element” appeared. However, unlike framed

structures, closed form solutions to the differential equations

governing the behavior of continuum elements were not

available. Energy principles such as the theorem of virtual work

or the principle of minimum potential energy, which were well

known, combined with a piece-wise polynomial interpolation of

the unknown displacement, were used to establish the matrix

relationship between the forces and the interpolated

displacements at the nodes numerically. In the late 1960s, when

the method was recognized as being equivalent to a minimization

process, it was reformulated in the form of weighted residuals and

variational calculus and expanded to the simulation of

nonstructural problems in fluids, thermomechanics and

electromagnetics.

II. LINEAR QUADRILATERAL 4-NODE ELEMENT

In the quadrilateral family of elements, except for the square or

the rectangle, it is impossible to construct the shape functions

directly in terms of x and y. The only way to construct these

functions is to use a reference element, which is a square of side 2

(units) as represented in Figure 1.

Figure 1: Geometrical transformation of 4-node element

(Khennane 2013)

To define the geometrical transformation, we will assume that the

coordinates (x, y) of an arbitrary point of the parent element are

the unknown functions defined over the domain represented by

the reference element in its local coordinate system (ξ, η). Notice

that both the variables x and y belong to the linear class of

functions since they are continuous and their first derivatives are

constant equal to 1. Therefore, we start by constructing a general

approximation for x in terms of ξ and η.

x = α1 + α2ξ + α3η + α4ξη (1)

𝑥 = [1 𝜉 𝜂 𝜉𝜂]

α1

α2
α3

α4

 (2)

Then, we will transform the general approximation, equation (2),

to a nodal approximation by using the nodal values x1, x2, x3, and

x4 respectively at nodes 1, 2, 3, and 4. Notice also that the couple

(ξ, η) takes on the values of (−1, −1), (1, −1), (1, 1), and (−1, 1)

respectively at nodes 1, 2, 3, and 4. It follows

x1 = α1 − α2 − α3 + α4

x2 = α1 + α2 − α3 − α4

x3 = α1 + α2 + α3 + α4

x4 = α1 − α2 + α3 − α4

which, when rewritten in a matrix form, yields

𝑥1

𝑥2
𝑥3

𝑥4

 =

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 −1 −1

α1

α2
α3

α4

 (3)

or in a more compact form as

International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Jan-Feb 2017
Available Online@www.ijtrd.com 317

 𝑋 = 𝐴 α (4)

The parameters αi can be obtained easily by solving the equation

(3). It can be noticed that the columns of the matrix [A] are

actually orthogonal vectors of norm 4. Hence, the inverse of the

matrix [A] is obtained as

 𝐴 −1 = 1/4 𝐴 𝑇 = 1/4

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 −1 −1

 (5)

and the parameters αi as

α1

α2
α3

α4

 = 1/4

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 −1 −1

𝑥1

𝑥2
𝑥3

𝑥4

 (6)

Substituting for the parameters αi in equation (2) yields

𝑥(ξ, η) = 1/4[1 𝜉 𝜂 𝜉𝜂]

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 −1 −1

𝑥1

𝑥2
𝑥3

𝑥4

 (7)

Expanding and rearranging equation (7) leads to

x(ξ, η) = N1(ξ, η)x1 + N2(ξ, η)x2 + N3(ξ, η)x3 + N4(ξ, η)x4 (8)

N1(ξ, η) = 0.25(1 − ξ − η + ξη)

N2(ξ, η) = 0.25(1 + ξ − η − ξη)

N3(ξ, η) = 0.25(1 + ξ + η + ξη)

N4(ξ, η) = 0.25(1 − ξ + η − ξη)

Following exactly the same process for the variable y, we obtain

y(ξ, η) = N1(ξ, η)y1 + N2(ξ, η)y2 + N3(ξ, η)y3 + N4(ξ, η)y4 (9)

Expressions (3) and (5) represent well and truly a linear

geometrical transformation. The center of the reference square is

given by (ξ, η) = (0, 0).

III. FINITE ELEMENT FORMULATION FOR PLANE

STRESS PROBLEMS

The stress–strain relationships for plane stress given as

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

 =
𝐸

1−µ2

1 µ 0
µ 1 0

0 0
(1−µ)

2

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

 (10)

 𝜎 = 𝐷 𝜀 (11)

Whether it is a state of plane stress or plane strain, a material

point can only move in the directions x and y. Therefore, the two

displacement variables that play a role are u(x, y) and v(x,y). The

infinitesimal strain displacements relations for both theories are

the same and they are given as

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
 (12)

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
 (13)

𝜀𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 (14)

These relations can be written in a matrix form as

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

 =

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑥

𝑢
𝑣
 (15)

or in a more compact form as

 𝜀 = 𝐿 𝑈 (16)

Where [L] is a linear differential operator. Let us consider a finite

element approximation for the unknown functions u and v. For an

element having n nodes, the unknown displacements are

interpolated using nodal approximations as

u = N1u1 + N2u2 +· · ·+Nnun

v = N1v1 + N2v2 +· · ·+Nnvn

which, when written in a matrix form, yields

𝑢
𝑣
 =

𝑁1 0 𝑁2 0 . . . 𝑁𝑛 0

0 𝑁1 0 𝑁2 . . . 0 𝑁𝑛

𝑢1

𝑣1
𝑢2

𝑣2...
𝑢𝑛
𝑣𝑛

 (17)

or simply as

{U} = [N]{a} (18)

with {a} = {u1, v1, u2, v2, . . . , un, vn} being the vector of nodal

displacements. The number and the form of the shape functions

depend on the element used.

Substituting for {U} using equation (15), the strain displacement

equation (16) become

{ε} = [B]{a} (19)

where

 𝐵 =

𝜕𝑁1

𝜕
0

𝜕𝑁2

𝜕
0 . . . 𝜕𝑁𝑛

𝜕
0

0
𝜕𝑁1

𝜕
0

𝜕𝑁2

𝜕
. . . 0

𝜕𝑁𝑛

𝜕
𝜕𝑁1

𝜕

𝜕𝑁1

𝜕

𝜕𝑁2

𝜕

𝜕𝑁2

𝜕
. . . 𝜕𝑁𝑛

𝜕

𝜕𝑁𝑛

𝜕

 (20)

The matrix [B] is called the strain matrix; it relates the nodal

displacements to the strains. It is formed by the partial derivatives

of the shape functions Ni(x, y).

IV. DISPLACEMENT FIELD

The displacement field over the element is approximated as

u = N1u1 + N2u2 + N3u3 + N4u4

v = N1v1 + N2v2 + N3v3 + N4v4

or in a matrix form as

𝑢
𝑣
 =

𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0

0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

𝑢1

𝑣1
𝑢2

𝑣2
𝑢3

𝑣3
𝑢4

𝑣4

 (21)

International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Jan-Feb 2017
Available Online@www.ijtrd.com 318

Figure 2: Linear 4-node quadrilateral element (Khennane 2013)

or more compactly as

{U} = [N]{a} (22)

The element is isoparametric, therefore the shape functions Ni(ξ,

η) also define the geometrical transformation between the

reference and the parent element. The coordinates x and y of any

point of the parent element are given as

x = N1x1 + N2x2 + N3x3 + N4x4 (23)

y = N1y1 + N2y2 + N3y3 + N4y4 (24)

Subsequently, we will need to express the derivatives of a

function in x and y coordinates in terms of its derivatives in ξ and

η coordinates. This is done as follows

𝜕𝑁

𝜕ξ
=

𝜕𝑁

𝜕x

𝜕𝑥

𝜕ξ
+

𝜕𝑁

𝜕𝑦

𝜕𝑦

𝜕ξ
 (25)

𝜕𝑁

𝜕η
=

𝜕𝑁

𝜕x

𝜕𝑥

𝜕η
+

𝜕𝑁

𝜕𝑦

𝜕𝑦

𝜕η
 (26)

𝜕𝑁

𝜕ξ

𝜕𝑁

𝜕η

 = 𝐽

𝜕𝑁

𝜕x
𝜕𝑁

𝜕𝑦

 (27)

Where J is Jacobian transformation matrix which is given as

𝐽 =

𝜕𝑥

𝜕ξ

𝜕𝑦

𝜕ξ

𝜕𝑥

𝜕η

𝜕𝑦

𝜕η

 =

𝜕𝑁𝑖

𝜕ξ
𝑥𝑖

4
𝑖=1

𝜕𝑁𝑖

𝜕ξ
𝑦𝑖

4
𝑖=1

𝜕𝑁𝑖

𝜕η
𝑥𝑖

4
𝑖=1

𝜕𝑁𝑖

𝜕η
𝑦𝑖

4
𝑖=1

 (28a)

After deriving and rearranging, the Jacobian is written in the form

of a product of two matrices:

 𝐽 = 1/4
−(1 − η) (1 − η) (1 + η) −(1 + η)

−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ)

𝑥1 𝑦1

𝑥2 𝑦2
𝑥3

𝑥4

𝑦3

𝑦4

 (28b)

A. Strain Matrix

Substituting for the displacements u and v in equation (16) using

equation (22), the strain vector is obtained as

 𝜀 = 𝐵 𝑎 (29)

 𝐵 =

𝜕𝑁1

𝜕𝑥
0

𝜕𝑁2

𝜕𝑥
 0

𝜕𝑁3

𝜕𝑥
 0

𝜕𝑁4

𝜕𝑥
 0

0
𝜕𝑁1

𝜕𝑦
0

𝜕𝑁2

𝜕𝑦
 0

𝜕𝑁3

𝜕𝑥
 0

𝜕𝑁4

𝜕𝑦
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑦

𝜕𝑁2

𝜕𝑥

𝜕𝑁3

𝜕𝑥

𝜕𝑁3

𝜕𝑥

𝜕𝑁4

𝜕𝑦

𝜕𝑁4

𝜕𝑥

To evaluate the matrix [B], it is necessary to relate the partial

derivatives in the (x, y) coordinates to the local coordinates (ξ, η).

The derivative of the shape functions can be written as follows

using the chain rule:

𝜕𝑁𝑖

𝜕ξ
=

𝜕𝑁𝑖

𝜕x

𝜕𝑥

𝜕ξ
+

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑦

𝜕ξ
 (30)

𝜕𝑁𝑖

𝜕η
=

𝜕𝑁𝑖

𝜕x

𝜕𝑥

𝜕η
+

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑦

𝜕η
 (31)

The derivatives of the shape functions in the (x, y) system is

obtained by inversing the previous equation:

𝜕𝑁𝑖

𝜕x
𝜕𝑁𝑖

𝜕𝑦

 = 𝐽 −1

𝜕𝑥

𝜕ξ

𝜕𝑦

𝜕ξ

𝜕𝑥

𝜕η

𝜕𝑦

𝜕η

 (32)

B. Stiffness Matrix

The stiffness matrix for the quadrilateral element can be derived

from the strain energy in the body, given by

𝑈 =
1

2
 𝜎𝑇𝜀𝑑𝑣 (33)

𝑈 =
1

2
𝑡𝑒 𝜎

𝑇𝜀𝑑𝐴 (34)

 𝜎 = 𝐷 𝐵 𝑎 (35)
 𝜀 = 𝐵 𝑎 (36)

where te is the thickness of element e

𝑈 =
1

2
𝑡𝑒 𝑎 𝐵 𝑇 𝐷 𝐵 𝑎 𝑑𝑥𝑑𝑦

1

−1

1

−1
 (37)

𝑈 =
1

2
𝑡𝑒 𝑎 𝐵 𝑇 𝐷 𝐵 𝑎 𝑑𝑒𝑡𝐽𝑑ξ𝑑η

1

−1

1

−1
 (38)

=
1

2
 𝑎𝑇𝑘𝑎 (39)

where

𝑘 = 𝑡𝑒 𝐵 𝑇 𝐷 𝐵 𝑑𝑒𝑡𝐽𝑑ξ𝑑η
1

−1

1

−1
 (40)

is the element stiffness matrix of dimension (8x8).

C. Numerical Integration

The Gaussian quadrature approach is used for integration of

quadrilateral element. Consider the n-point approximation

𝐼 = 𝑓 ξ 𝑑ξ ≈ w1f ξ
1
 +

1

−1
w2f ξ

2
 + ⋯ . +wn f(ξ

n
) (41)

Where w1,w2,….,and wn are the weights and ξ1, ξ2, …., and ξn

are the sampling points or gauss points. The idea behind Gaussian

quadrature is to select the n Gauss points and n weight such that

equation 3.51 provides an exact answer or polynomials f(ξ) of as

large a degree as possible. In other words, the idea is that if the n-

point integration formula is exact for all polynomial. In our work

we have two variables so we used two point formula such as

 𝑓(ξ)𝑑ξ ≈
1

−1
w1f ξ

1
 + w2f ξ

2
 (42)

We have four parameters to choose: w1, w2, ξ1 and ξ2. We can

therefore accept the formula in equation (42) to be exact for a

cubic polynomial. Thus choosing f(ξ)=ao+a1 ξ+a2 ξ
2
+a3 ξ

3
 yields

𝐸𝑟𝑟𝑜𝑟 = (ao + a1 ξ + a2 ξ2 + a3ξ
3)

1

−1
 − w1f ξ

1
 +

w2fξ2 (42)

Requiring zero error yields

w1+w2=2

w1 ξ1+w2 ξ2=0

w1 ξ1
2
+w2 ξ2

2
=2/3

w1 ξ1
3
+w2 ξ2

3
=0

International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Jan-Feb 2017
Available Online@www.ijtrd.com 319

These nonlinear equations have the unique solution

w1 =w2 =1 -ξ1 =ξ2=1/ 3=0.57735022691…..

These values are directly used in the finite element analysis for 4-

nodes quadrilateral element.

V. MATLAB CODE IMPLEMENTATION

In present investigation a compact MATLAB code for structural

analysis of cantilever beam and Messerschmitt Bolkow Blohm

Beam subjected to static and self-weight loading has been

performed. The Matlab code (see the Appendix), is built up as a

standard topology optimization code. The main program is called

from the Matlab prompt by the line

function FEM (Nx,Ny,CANTILEVER,MMB,GRAVITY)

Where nelx and nely are number of elements in the horizontal and

vertical directions, respectively. CANTILEVER and MBB is used

for analysis of cantilever beam and Messerschmitt Bolkow

Blohm beam respectively. GRAVITY is used when structure is

analyzed under self weight. Other variables as well as boundary

conditions are defined in the MATLAB code itself and can be

edited if needed. The Compete MATLAB code for static and self-

weight loading conditions are described in appendix. The

description of MATLAB code (cantilever beam under static

loading meshing by 4-node elements) written is as follow:

 Nodal coordinate generation (line 4-14)

 Nodal connectivity generation (line 15-28)

 Input value used in FEM (line 29-42)

 Calculating stiffness matrix of body (line 43-74)

 Defining boundary condition force applied and

calculating displacement of body (line 75-119)

 Plotting final result obtained (line 120-169)

1. For structure analysis of cantilever beam under static loading

condition as shown in Figure 4 (b) input

FEM(32,20,1,0,0)

2. For structure analysis of cantilever beam under self-weight

loading condition as shown in Figure 5 (b) input

FEM(32,20,0,0,11)

3. For structure analysis of MBB beam under static loading

condition as shown in Figure 6 (b) input

FEM(60,20,0,1,0)

4. For structure analysis of MBB beam under self-weight loading

condition as shown in Figure 7 (b) input

FEM(60,20,0,0,12)

(a) (b)

Figure 3 Geometry and Boundary Conditions (a) cantilever beam (b) MBB beam

Table 1: Maximum deformation in x and y directions under point load

CANTILEVER BEAM MBB BEAM

ANSYS MATLAB ANSYS MATLAB

CANTILEVER BEAM CANTILEVER BEAM MBB BEAM MBB BEAM

UX 11.208 mm UX 30.545 mm UX 30.545 mm UX 30.545 mm

UY 27.471 mm UY 125.88 mm UY 125.88 mm UY 125.88 mm

MATERIAL PROPERTIES E =1 ν =0.3

(a) DISPLACEMENT UX DISPLACEMENT UY

F

F

60 mm

20 mm

20 mm

International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Jan-Feb 2017
Available Online@www.ijtrd.com 320

(b) DISPLACEMENT UX DISPLACEMENT UY

Figure 4: Deformation of catiliver beam under point load (a) ANSYS (b) MATLAB

(a) DISPLACEMENT UX DISPLACEMENT UY

(b) DISPLACEMENT UX DISPLACEMENT UY

Figure 5: Deformation of MBB beam under point load (a) ANSYS (b) MATLAB

Table 1: Maximum deformation in x and y directions self-weight load

CANTILEVER BEAM MBB BEAM

ANSYS MATLAB ANSYS MATLAB

CANTILEVER BEAM CANTILEVER BEAM MBB BEAM MBB BEAM

UX 16450 UX 16450 UX 2.5849×105 UX 2.5849×105

UY 54401 UY 54401 UY 9.4256×105 UY 9.4256×105

MATERIAL PROPERTIES ρ =1 g =10 E =1 ν =0.3

(a) DISPLACEMENT UX DISPLACEMENT UY

International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Jan-Feb 2017
Available Online@www.ijtrd.com 321

(b) DISPLACEMENT UX DISPLACEMENT UY

Figure 6: Deformation of cantiliver beam under self-weight load (a) ANSYS (b) MATLAB

(a) DISPLACEMENT UX DISPLACEMENT UY

(b) DISPLACEMENT UX DISPLACEMENT UY

Figure 7: Deformation of MBB beam under self-weight load (a) ANSYS (b) MATLAB

CONCLUSION

In present investigation MATLAB code for structural analysis

of 2-D linear elastic isotropic structures i.e. cantilever beam and

MBB beam is presented. For both the beam maximum

displacement obtained in x & y directions with MATLAB code

are been compared with the ANSYS and from above result we

conclude that the accuracy of MATLAB code is same as that of

ANSYS software for structural analysis of above numerical

examples (cantilever beam and MBB beam). Another

application of FEM MATLAB code is for self-weight analysis

in which weight of the structure also include in structure

analysis of structures which also equally efficient to ANSYS

software.
APPENDIX

1. function FEM (Nx,Ny,CANTILEVER,MMB,GRAVITY)

2. nelx=Nx;

3. nely=Ny;

% Input data for nodal coordinate values

4. coordinates=zeros((nely+1)*(nelx+1),2);

5. y=[nely:-1:0];

6. x=[0:1:nelx];

7. n=0;

8. for i=1:(nelx+1)

9. for j=1:(nely+1)

10. coordinates((n+j),1)=x(i);

11. coordinates((n+j),2)=y(j);

12. end

13. n=n+(nely+1);

14. end

% Input data for nodal connectivity for each element

15. nodes=zeros(nelx*nely,4);

16. B=[1:nely];

17. t=[2:(nely+1)];

18. m=[0:nely:nely*(nelx-1)];

19. n=0;

20. for j=1:nelx

21. for i=1:nely

22. nodes((i+m(j)),1)=B(i)+n;

23. nodes((i+m(j)),2)=B(i)+n+(nely+1);

24. nodes((i+m(j)),3)=t(i)+n+(nely+1);

25. nodes((i+m(j)),4)=t(i)+n;

26. end

27. n=n+(nely+1);

28. end

% Input data

29. nel = length(nodes);

30. nnel=4;

31. ndof=2;

32. nnode = length(coordinates) ;

33. sdof=nnode*ndof;

International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Jan-Feb 2017
Available Online@www.ijtrd.com 322

34. edof=nnel*ndof;

35. stiffness = zeros(sdof,sdof);

36. displacement=zeros(sdof,1);

37. force = zeros(sdof,1);

38. E = 2.1*10^9;

39. density=7850;

40. gravity=9.81;

41. F=(density*gravity);

42. nu = 0.3; % Poisson's ratio

% Computation of element matrices and vectors and their assembly

43. D = E/(1-nu^2)*[1 nu 0 ; nu 1 0; 0 0 (1-nu)/2] ;

44. Gausspointx=[-1 1 1 -1]/sqrt(3);

45. Gausspointy=[1 1 -1 -1]/sqrt(3);

46. Gaussweight=[1 1 1 1];

47. for iel=1:nel

48. for i=1:nnel

49. nd(i)=nodes(iel,i);

50. xx(i)=coordinates(nd(i),1);

51. yy(i)=coordinates(nd(i),2);

52. end

53. K = zeros(edof,edof);

54. for int=1:4

55. xi = Gausspointx(int);

56. wtx = Gaussweight(int);

57. eta = Gausspointy(int);

58. wty = Gaussweight(int) ;

% Compute isoparametric four-node Quadrilateral shape functions and

their derivatives

59. j=0.25*[-(1-eta) (1-eta) (1+eta) -(1+eta);...

 (1-xi) (1+xi) -(1+xi) -(1-xi)];

60. J=j*[xx;yy]';

61. A=[J(2,2) -J(1,2) 0 0;

0 0 -J(2,1) J(1,1);

-J(2,1) J(1,1) J(2,2) -J(1,2)]*(1/det(J));

62. G=(1/4)*[-(1-eta) 0 (1-eta) 0 (1+eta) 0 -(1+eta) 0;

 (1-xi) 0 (1+xi) 0 -(1+xi) 0 -(1-xi) 0;

 0 -(1-eta) 0 (1-eta) 0 (1+eta) 0 -(1+eta);

 0 (1-xi) 0 (1+xi) 0 -(1+xi) 0 -(1-xi)];

63. B=A*G;

64. K=K+B'*D*B*wtx*wty*det(J);

65. end

66. EDOF = [2*nd(1)-1; 2*nd(1); 2*nd(2)-1; 2*nd(2); 2*nd(3)-1;

2*nd(3); 2*nd(4)-1; 2*nd(4)];

67. stiffness(EDOF,EDOF)=stiffness(EDOF,EDOF)+K;

68. end

% constrain, boundary condition and force vector

%-----------------------external force-----------------------------

69. if (CANTILEVER==1)

70. force(2*(nelx+1)*(nely+1)) = -1 ;

71. displacement((2*(nely+1)+1):sdof) =

stiffness((2*(nely+1)+1):sdof,(2*(nely+1)+1):sdof)\force((2*(nely

+1)+1):sdof);

72. end

%-----------------------gravity force--------------------------------

73. if (MMB==1)

74. force(2,1) = -1;

75. fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);

76. alldofs = [1:2*(nely+1)*(nelx+1)];

77. freedofs = setdiff(alldofs,fixeddofs);

78. displacement(freedofs,:) = stiffness(freedofs,freedofs) \

force(freedofs,:);

79. displacement(fixeddofs,:)= 0;

80. end

%-----------------------gravity force-------------------------------

81. if (GRAVITY>0)

82. W=[1 (nely+1) ((nely+1)*(nelx+1)-nely) (nely+1)*(nelx+1)];

83. w1=[2:nely];

84. w2=[(nely+2):(nely+1):(nely+1)*(nelx)];

85. w3=[(2*(nely+1)):(nely+1):(nely+1)*(nelx)];

86. w4=[((nely+1)*(nelx)+2):((nely+1)*(nelx+1)-1)];

87. w5=[1:(nely+1)*(nelx+1)];

88. W1=union(w1,w2);

89. W2=union(w3,w4);

90. W3=union(W1,W2);

91. W4=setdiff(w5,W3);

92. W5=setdiff(W4,W);

93. force(2*W')=-F/4;

94. force(2*W3')=-F/2;

95. force(2*W5')=-F;

96. if (GRAVITY==11)

97. displacement((2*(nely+1)+1):sdof) =

stiffness((2*(nely+1)+1):sdof,(2*(nely+1)+1):sdof)\force((2*(nely

+1)+1):sdof);

98. end

99. if (GRAVITY==12)

100. fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);

101. alldofs = [1:2*(nely+1)*(nelx+1)];

102. freedofs = setdiff(alldofs,fixeddofs);

103. displacement(freedofs,:) = stiffness(freedofs,freedofs) \

force(freedofs,:);

104. displacement(fixeddofs,:)= 0;

105. end

106. end

% solution

107. UX = displacement(1:2:sdof) ;

108. UY = displacement(2:2:sdof)

109. disp('The maximum displacement UX')

110. max(abs(UX))

111. disp('The maximum displacement UY')

112. max(abs(UY))

113. for iel=1:nel

114. for i=1:nnel

115. nd(i)=nodes(iel,i); X(i,iel)=coordinates(nd(i),1);

Y(i,iel)=coordinates(nd(i),2);

116. end

117. profile1(:,iel) = -UX(nd') ;

118. profile2(:,iel) = -UY(nd') ;

119. end

120. % Plotting the FEM mesh and profile of the given component

121. f3 = figure ;

122. set(f3,'name','Postprocessing','numbertitle','off') ;

123. plot(X,Y,'k')

124. fill(X,Y,profile1)

125. axis off ;

126. cbar = colorbar;

127. set(figure,'name','Postprocessing','numbertitle','off') ;

128. plot(X,Y,'k')

129. fill(X,Y,profile2)

130. axis off ;

131. cbar = colorbar;

References

[1] Chandrupatla, T. R. and Belegunda, A. D. 2004.

Introduction to finite element in engineering, Prentice hall

upper Inc.

[2] Hutton, D. V. 2004. Fundamental of finite element analysis,

The McGraw-Hill companies

[3] Khennane, A. 2013. Introduction to finite element analysis

using MATLAB and Abaqus, Taylor & Francis Group,

LLC

[4] Ain, J.E 1982. Application and implementation of finite

element methods, London:Academic.

[5] Baker, A.J. and Pepper D.W., 1988. Finite element analysis

on microcomputers. New York:McGraw-Hill.

International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Jan-Feb 2017
Available Online@www.ijtrd.com 323

[6] Lepi, S.M., 1998. Practical guide to finite elements: a solid

mechanics approach, Marcel Dekker.

[7] Smith I.M. and Griffiths D.V. Programming the Finite

Element Method, 2nd edn. Wiley, Chichester, U.K., 1988.

[8] Timoshenko S. and Goodier J. Theory of Elasticity, 3rd

edn. McGraw-Hill, New York, 1970.

[9] Timoshenko S. and Woinowsky-Krieger S. Theory of Plates

and Shells. McGraw-Hill, New York, 1959.

[10] Zienkiewicz O.C. The Finite Element Method, 3rd edn.

McGraw-Hill, York, London, 1977.
[11] Cook R.D. Finite Element Modeling for Stress Analysis.

Wiley, New York, 1995.

[12] Kwon Y.W. and Bang H. The Finite Element Method Using

Matlab, 2nd edn. CRC Press, London, U.K., 2000.

[13] Logan D.L. A First Course in the Finite Element Method

Using Algor, 2nd edn. Brooks/Cole Thompson Learning,

Pacific Groove, CA, 2001.

[14] Mase G.E. Schaum’s Outline Series: Theory and Problems

of Continuum Mechanics. McGraw-Hill, New York, 1970.

[15] McGuire M., Gallagher G.H., and Ziemian R.D. Matrix

Structural Analysis, 2nd edn. Wiley, New York, 2000.

[16] Meek J.L. Computer Methods in Structural Analysis. E &

FN SPON, London, U.K., 1991.

[17] Reddy J.N. An Introduction to the Finite Element Method,

3rd edn. McGraw-Hill, New York, 2006.

[18] Saada A.S. Elasticity: Theory and Applications, 2nd edn.

Krieger Publishing, Melbourne, FL, 1993.

