
International Journal of Trend in Research and Development, Volume 2(5), ISSN 2394-9333
www.ijtrd.com

IJTRD | Sep - Oct 2015

Available Online@www.ijtrd.com 22

Evaluating Cassandra Data-sets with Hadoop Approaches
Ruchira A. Kulkarni

Student (BE), Computer Science & Engineering Department,

Shri Sant Gadge Baba College of Engineering & Technology, Bhusawal, India

Abstract: The progressive transition in both

scientific and industrial datasets has been the driving

force behind the development and study interests in

the NoSQL model. Loosely structured data poses a

challenge to traditional data store systems, and when

working with NoSQL model, these systems are often

considered impractical and costly. As the quantity

and quality of less structured data grows, so does the

demand for a processing pipeline that is capable of

seamlessly bind the NoSQL storage model and

mapReduce which is “Big Data” processing

platform. Although MapReduce is the exemplar of

choice for data intensive computing, Java based

frameworks like Hadoop requires users to write

MapReduce code in Java while Hadoop Streaming

module let users to define non Java executables as

map and reduce operations. When challenged with

legacy C/C++ applications and non Java

executables, there arises a further need to permit

NoSQL data stores access to the functions of

Hadoop Streaming. We present approaches in

solving the difficulty of integrating NoSQL data

stores with MapReduce using non Java application

scenarios, along with benefits and drawbacks of

each approach. We compare Hadoop Streaming with

our own streaming framework, MARISSA, to see

performance implications of coupling NoSQL data

stores like Cassandra with MapReduce structure that

normally trust on file-system based data stores. this

experiments also include Hadoop-C*, which is a

configuration where a Hadoop cluster is Located

with a Cassandra cluster in order to process data by

using Hadoop with non java executables.

Keywords- Hadoop, Cassandra, NoSQL, Pipelines,

Map Reduce

I. INTRODUCTION

With the increased amount of data collection taking

place as a result of social media interaction,

scientific experiments, and even e-commerce

applications, the nature of data as we know it has

been evolving. As a result of this data generation

from various different sources “new generation”

data, presents challenges as it is not all relational and

lacks predefined structures. As an example, blog

sections for commercial entities collect various

inputs from customers about their products from

Twitter, Facebook, and social media outlets.

However, the structure of this data differs vastly

because it is collected from varied sources. A similar

phenomenon has arisen in the scientific arena, such

as at NERSC where data coming from a single

experiment may involve different sensors

monitoring disparate aspects of a given test. In this

circumstance, data relevant to that experiment as a

whole will be produced, but it may be formatted in

different ways since it produced from different

sources.

While similar challenges existed before the advent

of the NoSQL model, earlier approaches involved

storing differently structured data in separate

databases, and subsequently analyzing each dataset

in isolation, potentially lost a “bigger picture” or

important link between datasets. Currently, NoSQL

provides a solution to this problem of data isolation

by permitting datasets, sharing the same context but

not same structure or format, to be gathered

together. This allows the data not only to be stored

in the same tables but to subsequently be analyzed

collectively.

When unstructured data grows to huge sizes

however, a distributed approach to analyze

unstructured data needs to be considered.

MapReduce [1] has emerged as the model of choice

for processing “Big Data” problems. MapReduce

frameworks such as Hadoop provide storage and

processing capabilities for data in any form,

structured or not. However, they do not directly

provide support for querying the data. Growing

datasets not only required to be queried to enable

real time information collection, but also need to

undergo complex batch data analysis operations to

extract the best possible knowledge.

NoSQL data stores offer not the potential of storing

large, loosely structured data that can later be

analyzed and combined as a whole, but they also

offer the ability for queries to be applied on such

data. This is especially beneficial when real time

answers are needed on only pieces of the stored data.

Despite the presence of this valuable batch

processing potential from NoSQL stores, there is a

International Journal of Trend in Research and Development, Volume 2(5), ISSN 2394-9333
www.ijtrd.com

IJTRD | Sep - Oct 2015

Available Online@www.ijtrd.com 23

need for a software pipeline allowing “Big Data”

processing models like MapReduce to spout NoSQL

data stores as wellspring of input. There is also a

need for a software pipeline allowing MapReduce

legacy programs written in C, C++, and non-Java

executables to use “Big Data” technologies.

A. Cassandra

Cassandra [2] is a non-relational and

column-based, distributed database. It was originally

developed by Facebook. It is now an open source

Apache project. Cassandra is designed to store large

datasets over a set of commodity systems by using a

peer-to-peer cluster structure to promote horizontal

scalability. In the column-based data model of

Cassandra, a column is the smallest component of

data. Columns associated with a certain key

constitute a row. Each row can contain any number

of columns. A set of rows forms a column family,

which is similar to tables in relational databases.

Records in the column families are stored in sorted

order by row keys, in separate files. The keyspace

congregates one or more column families in the

application, similar to a schema in a relational

database.

B. MapReduce

Taking inspiration from functional programming,

MapReduce starts with the idea of splitting an input

dataset over a set of commodity machines, called

workers, and processes these data splits in parallel

with user-defined map and reduce functions.

MapReduce abstracts away from the application

programmers the details of input distribution,

parallelization, and scheduling and fault tolerance.

Hadoop & Hadoop Streaming: Apache Hadoop is

the leading open source MapReduce implementation

.Hadoop relies on two fundamental parts: the

Hadoop Distributed File System (HDFS) [3] and the

Hadoop MapReduce Framework for data

management and job execution respectively. A

Hadoop JobTracker, running on the master node is

responsible for resolving job details (i.e., number of

mappers/reducers), monitoring the job progress and

worker status. Once a dataset is put into the HDFS,

it is split into data chunks and distributed throughout

the cluster. Each worker hosting a data split runs a

process called DataNode and a TaskTracker that is

responsible for processing the data splits owned by

the local DataNode.

Hadoop is implemented in Java and needs

the map and reduce operations to also be

implemented in Java and use the Hadoop API. This

creates a challenge for legacy applications where it

may be not practical to rewrite the applications in

Java or where the source code is no longer available.

Hadoop Streaming is designed to address this need

by allowing users to create MapReduce jobs where

any executable (written in any language or script)

can be specified to be the map or reduce operations.

Hadoop Streaming has a restricted model [4]; it is

commonly used to run numerous scientific

applications from various disciplines. It allows

domain scientists to use legacy applications for

complex scientific processing or use simple scripting

languages that eliminate the sharp learning curve

needed to

Write scalable MapReduce programs for

Hadoop in Java. Protein sequence comparison,

tropical storm detection, atmospheric river detection

and numerical linear algebra are a few examples of

domain scientists using Hadoop Streaming on

NERSC [5] systems [6]..

Marissa: In earlier work, we highlighted both

the performance penalty and application

challenges of Hadoop Streaming and introduced

MARISSA to address these shortcomings [4],

[5]. MARISSA leaves the input management to

the underlying shared file system to solely focus

on processing. Unlike Hadoop Streaming,

MARISSA does not require processes like

TaskTrackers and DataNodes for execution of

MapReduce operations. Once the input data is

split by the master node using the Splitter

module and placed into the shared file system,

each worker node has access to the input chunks

awaiting execution. Unlike Hadoop, MARISSA

does not force manifest data locality – rather it

leaves such optimizations to the shared file

system. Each worker node points the target

executables to the input splits they are

responsible for, monitors the status of the local

job, and informs the master when the local tasks

are all completed. Compatibility with POSIX

file-systems, the ability to run applications not

using standard input and output, and the ease of

iteration support are some of the features

implemented within MARISSA that are often

considered lacking in Hadoop.

International Journal of Trend in Research and Development, Volume 2(5), ISSN 2394-9333
www.ijtrd.com

IJTRD | Sep - Oct 2015

Available Online@www.ijtrd.com 24

II. MAPREDUCE STREAMING OVER

CASSANDRA DATA

A. MapReduce Streaming Pipeline for Cassandra

Datasets

In this paper, we introduce a MapReduce

pipeline that can be used by MapReduce frameworks

like Hadoop Streaming and MARISSA that offer

MapReduce ability with not Java executables. This

pipeline, shown in Figure 1, has three main stages:

Data Preparation, Data Transformation (MR1) and

Data Processing (MR2).

1) Data Preparation:

Data Preparation, Figure 1a, is the step

where input datasets are downloaded from

Cassandra servers to the corresponding file system –

HDFS for Hadoop Streaming and the shared file

system for MARISSA. In both of these frameworks,

this step is starting in parallel. Cassandra allows

exporting the records of a target dataset in JSON

formatted files and using this built-in feature each

node downloads the data from the local Cassandra

servers to the file system. In experimental setup,

each node that is running a Cassandra server is a

worker node for the MapReduce framework in use.

In experimental data have 3 columns. This choice

aims to mimic storing Twitter user interaction logs

in Cassandra. For 64 million records, we have 20GB

data distributed through Cassandra servers with the

replication factor set to 1. They implemented a set of

tools to launch the process of exporting data from a

Cassandra cluster. For each write request, Cassandra

creates a commit log entry and writes mutated

columns to an in-memory structure called as

Memtable. This inmemory structure is written into

an immutable data file named SSTable at a certain

size limit or predefined period of time. In

implementation, each worker connects in parallel to

its local database

 Server and flushes Memtables into

SSTables After flushing data, a worker begins the

exporting operations. Every worker collects the

exported records in unique files stored on the shared

file system. In MARISSA, they were able to

introduce these tools into the Sash module. For

Hadoop Streaming, however, they implemented

additional tools to initiate the data preparation

process in parallel on all worker nodes. Next, this.

Data was placed into the HDFS using the put

command from the Hadoop master node. In

Hadoop’s case, the put operation includes splitting

the input into chunks and placing those chunks

throughout the HDFS cluster. In MARISSA,

however, the worker nodes flush the data to the

shared file system and later these data files are split

by the master one-by-one for each core.

2) Data Transformation (MR1):

In the Data Preparation stage the input

dataset from Cassandra servers is downloaded and

placed into the shared file system or HDFS in JSON

format. Moving the input dataset out of the database

and into the file system also requires the exported

data to be transformed into a format that can be

processed by the target non-Java applications.

Cassandra allows users to export its dataset as JSON

formatted files. As Per assumption is that the target

executables are legacy applications which are either

impossible or impractical to be modified, the input

data needs to be converted into a format that is liked

by these target applications. For this reason, our

software pipeline includes a MapReduce stage,

Figure 1b, where JSON data can be converted into

other formats. This phase simply processes each

input record and converts it to another format,

writing the results into the intermediate output files.

This step does not include any data or processing

dependencies between nodes and hence is a great fit

for the MapReduce model. In fact, we only initiate

the map stage of MapReduce since no reduce

operations are needed. If necessary for the

conversion of JSON files to the proper format, a

reduce step may be added conveniently. They

implemented this stage in Python scripts that can be

run using either MARISSA or Hadoop Streaming

without any modifications. As this is the first of a

series of iterative MapReduce functions whose

output will be used as the input by the following

MapReduce streaming functions, we simply call this

stage MR1. The system not only permits users to

convert the dataset into the desired format but also

makes it possible to specify the columns of interest.

This is extremely useful when a vertical subset of

the dataset is sufficient for the actual data

processing. This stage helps to reduce data size, in

turn affecting the performance of the next

MapReduce stage in a positive manner. This

performance gain is a result of fewer I/O and data

parsing operations.

3) Data Processing (MR2):

This is the final step of the MapReduce

Streaming pipeline shown in Figure 1. In Figure 1c

they run the non-Java executables, which were the

initial target applications, over the output data of

MR1, as the data is now in a format that can be

International Journal of Trend in Research and Development, Volume 2(5), ISSN 2394-9333
www.ijtrd.com

IJTRD | Sep - Oct 2015

Available Online@www.ijtrd.com 25

processed. They use MARISSA and Hadoop

Streaming to run executables as map and reduce

operations. Since this is the second MapReduce

stage in our pipeline we name it MR2. Any

MapReduce streaming job being run after MR1 is

considered an MR2 step.

Fig. 2. Three different streaming approaches to process

Cassandra datasets with MapReduce using non-Java

executables. Figure (a) shows the architecture of using

MARISSA for the MapReduce streaming pipeline in

Figure 1. The data is first downloaded from the database

servers to the shared file system, preprocessed for the

target application and at the final stage processed with

the user set non-Java executables. In (b), we show the

layout of using Hadoop Streaming in such a setting where

the dataset is also placed into the HDFS. Figure (c)

shows the structure of Hadoop-C*, which we use to

process Cassandra data directly from the local database

servers using Hadoop with non-Java executables.

B. MapReduce Streaming Pipeline with

MARISSA

As explained in Section I-A1, the Splitter

module of MARISSA has been modified such that

each worker connects to the local database server to

take a snapshot of the input dataset in JSON format

and place it into the shared file system. After the

Data Preparation stage shown in Figure 1a the input

is split and ready for Data Transformation. Figure 2a

shows the architecture of MARISSA. It allows each

non-Java executable to interact with the

corresponding input splits directly without needing

to mediate this interaction. In the stage of Data

Transformation, each MARISSA mapper runs an

executable to convert the JSON data files to the

user-specified input format. These converted files

are placed back into the shared file system.

C. MapReduce Streaming Pipeline with Hadoop

Streaming

In the Data Preparation stage, each Hadoop

worker connects to the local Cassandra server and

exports the input dataset in JSON formatted files.

Next, these files are placed into the HDFS using the

put command. This distributes the input files among

the DataNodes of the HDFS and later they are used

as input for the Data Transformation stage. HDFS is

a non-POSIX compliant file system that needs to use

of HDFS API to interact with the files. Since

Hadoop Streaming uses non-Java application for

map and/or reduce, the assumption is that these

executables do not use this API and therefore do not

have quick access to the input splits. Hence, Hadoop

TaskTrackers read the input from HDFS and feed

into the executables for processing and collect the

results to write back to the HDFS. In the Data

Transformation step shown in Figure 1b, Hadoop

Streaming requires our input conversion code to

convert the input to the desired format and later Data

Processing is performed on the output of this stage.

Note that at the Data Processing stage the input is

already in HDFS as it is the output of the previous

MapReduce job.

D. Hadoop-C*

Hadoop-C* is the setup where a Hadoop

cluster is co-located with a Cassandra cluster to

provide an input source and an output placement

alternative to the MapReduce operations. This setup,

illustrated in Figure 2c, allows users to leave the

input dataset on its own local Cassandra servers. We

use Hadoop TaskTrackers to read the input records

directly from the local servers to ensure data

locality. That is, there is no need for taking a

snapshot of the dataset and placing it into the file

system for MapReduce processing. Therefore, no

Data Preparation or Data Transformation steps are

required.

Before starting any of the map operations

each Hadoop mapper starts the user specified non-

Java executable and later in each map it reads an

input record from the database and converts it to the

expected format – streaming it to the running

application using stdin. Later, the output is collected

back from this application, using stdout, which is

then turned into a database record and written back

to the Cassandra data store. This design has the

limitation that the user specified applications should

start before-hand and should expect an input record

from stdin and write the output to stdout. Although

we explain the limitations of such a model in [4], in

this case we use it to provide in-place processing of

Cassandra data for cases when it is not practical to

constantly download data to the file system in order

to process the most up-to-date version.

International Journal of Trend in Research and Development, Volume 2(5), ISSN 2394-9333
www.ijtrd.com

IJTRD | Sep - Oct 2015

Available Online@www.ijtrd.com 26

Figure 2c shows that DataNodes are running

on each worker node, however, they are not used for

input management. DataNodes are required since

HDFS is used for dependency jars and other static

and intermediary data. In the following sections we

refer to this setup as Hadoop-C*. Furthermore, we

will use the notation Hadoop-C*-FS for the cases

when Hadoop TaskTrackers read the input records

directly from the local Cassandra servers, but the

output is collected in the shared file system.

Fig. 2. Three different streaming approaches to process

Cassandra datasets with MapReduce using non-Java

executables. Figure (a) shows the architecture of using

MARISSA for the MapReduce streaming pipeline in

Figure 1. The data is first downloaded from the database

servers to the shared file system, pre-processed for the

target application and at the final stage processed with

the user set non-Java executables. In (b), we show the

layout of using Hadoop Streaming in such a setting where

the dataset is also placed into the HDFS. Figure (c)

shows the structure of Hadoop-C*, which we use to

process Cassandra data directly from the local database

servers using Hadoop with non-Java executables.

CONCLUSION

In order to fully exploit ”Big Data” sets, we

need a software pipeline that can effectively

combine the use of data stores such as Cassandra

with scalable distributed programming models such

as MapReduce. In this paper we show two different

approaches, one working with the distributed

Cassandra cluster directly to perform MapReduce

operations and the other exporting the dataset from

the database servers to the file system for further

processing. We introduce a MapReduce streaming

pipeline for the latter approach and use two different

MapReduce streaming frameworks, Hadoop

Streaming and MARISSA, to show the applicability

of our system under different platforms.

Furthermore, we present a detailed performance

comparison of each approach under various

application scenarios. Our results are summarized in

Section V to help users make informed decisions for

processing large Cassandra datasets with

MapReduce using non-Java executables.

ACKNOWLEDGMENT

It is a great opportunity for me to express

my profound gratitude towards our H.O.D, Prof.

Dinesh. D. Patil who gave me the innovative idea of

making this seminar & whose zeal & enthusiasm are

source of inspiration for me. Also, I can't ignore the

innumerable efforts undertaken by Prof. Dinesh. D.

Patil, my Seminar Guide, Department of Computer

Science & Engineering and I also would like to

thank Prof. R.R.Singh, Seminar Incharge for his

guidance and motivations. I would also like to thank

all the staff members of Department of Computer

Science & Engineering, Hindi Seva Mandal’s, Shri

Sant Gadge Baba College of Engineering &

Technology, Bhusawal, for their valuable assistance

and support at all times.

REFERENCES

[1] J. Dean and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. Commun. ACM, 51(1):107–

113, Jan. 2008.

[2] A. Lakshman and P. Malik. Cassandra: structured

storage system on a p2p network. In Proceedings of the

28th ACM symposium on Principles of distributed

computing, PODC ’09, pages 5–5, New York, NY, USA,

2009. ACM.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.

The hadoop distributed file system. In Mass Storage

Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on, pages 1 –10, May 2010.

[4] E. Dede, Z. Fadika, J. Hartog, M. Govindaraju, L.

Ramakrishnan, Gunter, and R. Canon. Marissa:

Mapreduce implementation for streaming science

applications. In E-Science (e-Science), 2012 IEEE 8th

International Conference on, pages 1–8, 2012

[5] Fadika, Zacharia and Govindaraju, Madhusudhan and

Canon, Shane and Ramakrishnan, Lavanya. Evaluting

hadoop for data-intensive scientific operations. IEEE

Cloud Computing, 2012.

[6] L. Ramakrishnan, P. T. Zbiegel, S. Campbell, R.

Bradshaw, R. S. Canon, S. Coghlan, I. Sakrejda, N. Desai,

T. Declerck, and A. Liu. Magellan: experiences from a

science cloud. In Proceedings of the 2nd international

workshop on Scientific cloud computing, ScienceCloud

’11, pages 49–58, New York, NY, USA, 2011. ACM.

