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Abstract: The progressive transition in both 

scientific and industrial datasets has been the driving 

force behind the development and study interests in 

the NoSQL model. Loosely structured data poses a 

challenge to traditional data store systems, and when 

working with NoSQL model, these systems are often 

considered impractical and costly. As the quantity 

and quality of less structured data grows, so does the 

demand for a processing pipeline that is capable of 

seamlessly bind the NoSQL storage model and 

mapReduce which is “Big Data” processing 

platform. Although MapReduce is the exemplar of 

choice for data intensive computing, Java based 

frameworks like Hadoop requires users to write 

MapReduce code in Java while Hadoop Streaming 

module let users to define non Java executables as 

map and reduce operations. When challenged with 

legacy C/C++ applications and non Java 

executables, there arises a further need to permit 

NoSQL data stores access to the functions of 

Hadoop Streaming. We present approaches in 

solving the difficulty of integrating NoSQL data 

stores with MapReduce using non Java application 

scenarios, along with benefits and drawbacks of 

each approach. We compare Hadoop Streaming with 

our own streaming framework, MARISSA, to see 

performance implications of coupling NoSQL data 

stores like Cassandra with MapReduce structure that 

normally trust on file-system based data stores. this 

experiments also include Hadoop-C*, which is a 

configuration where a Hadoop cluster is Located 

with a Cassandra cluster in order to process data by 

using Hadoop with non java executables. 

Keywords- Hadoop, Cassandra, NoSQL, Pipelines, 
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I. INTRODUCTION 

With the increased amount of data collection taking 

place as a result of social media interaction, 

scientific experiments, and even e-commerce 

applications, the nature of data as we know it has 

been evolving. As a result of this data generation 

from various different sources “new generation” 

data, presents challenges as it is not all relational and 

lacks predefined structures. As an example, blog 

sections for commercial entities collect various 

inputs from customers about their products from 

Twitter, Facebook, and social media outlets. 

However, the structure of this data differs vastly 

because it is collected from varied sources. A similar 

phenomenon has arisen in the scientific arena, such 

as at NERSC where data coming from a single 

experiment may involve   different sensors 

monitoring disparate aspects of a given test. In this 

circumstance, data relevant to that experiment as a 

whole will be produced, but it may be formatted in 

different ways since it produced from different 

sources. 

While similar challenges existed before the advent 

of the NoSQL model, earlier approaches involved 

storing differently structured data in separate 

databases, and subsequently analyzing each dataset 

in isolation, potentially lost a “bigger picture” or 

important link between datasets. Currently, NoSQL 

provides a solution to this problem of data isolation 

by permitting datasets, sharing the same context but 

not same structure or format, to be gathered 

together. This allows the data not only to be stored 

in the same tables but to subsequently be analyzed 

collectively. 

When unstructured data grows to huge sizes 

however, a distributed approach to analyze 

unstructured data needs to be considered. 

MapReduce [1] has emerged as the model of choice 

for processing “Big Data” problems. MapReduce 

frameworks such as Hadoop provide storage and 

processing capabilities for data in any form, 

structured or not. However, they do not directly 

provide support for querying the data. Growing 

datasets not only required to be queried to enable 

real time information collection, but also need to 

undergo complex batch data analysis operations to 

extract the best possible knowledge. 

NoSQL data stores offer not the potential of storing 

large, loosely structured data that can later be 

analyzed and combined as a whole, but they also 

offer the ability for queries to be applied on such 

data. This is especially beneficial when real time 

answers are needed on only pieces of the stored data. 

Despite the presence of this valuable batch 

processing potential from NoSQL stores, there is a 
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need for a software pipeline allowing “Big Data” 

processing models like MapReduce to spout NoSQL 

data stores as wellspring of input. There is also a 

need for a software pipeline allowing MapReduce 

legacy programs written in C, C++, and non-Java 

executables to use “Big Data” technologies. 

A. Cassandra 

Cassandra [2] is a non-relational and 

column-based, distributed database. It was originally 

developed by Facebook. It is now an open source 

Apache project. Cassandra is designed to store large 

datasets over a set of commodity systems by using a 

peer-to-peer cluster structure to promote horizontal 

scalability. In the column-based data model of 

Cassandra, a column is the smallest component of 

data. Columns associated with a certain key 

constitute a row. Each row can contain any number 

of columns. A set of rows forms a column family, 

which is similar to tables in relational databases. 

Records in the column families are stored in sorted 

order by row keys, in separate files. The keyspace 

congregates one or more column families in the 

application, similar to a schema in a relational 

database.   

B. MapReduce 

Taking inspiration from functional programming, 

MapReduce starts with the idea of splitting an input 

dataset over a set of commodity machines, called 

workers, and processes these data splits in parallel 

with user-defined map and reduce functions. 

MapReduce abstracts away from the application 

programmers the details of input distribution, 

parallelization, and scheduling and fault tolerance. 

Hadoop & Hadoop Streaming: Apache Hadoop is 

the leading open source MapReduce implementation 

.Hadoop relies on two fundamental parts: the 

Hadoop Distributed File System (HDFS) [3] and the 

Hadoop MapReduce Framework for data 

management and job execution respectively. A 

Hadoop JobTracker, running on the master node is 

responsible for resolving job details (i.e., number of 

mappers/reducers), monitoring the job progress and 

worker status. Once a dataset is put into the HDFS, 

it is split into data chunks and distributed throughout 

the cluster. Each worker hosting a data split runs a 

process called DataNode and a TaskTracker that is 

responsible for processing the data splits owned by 

the local DataNode. 

Hadoop is implemented in Java and needs 

the map and reduce operations to also be 

implemented in Java and use the Hadoop API. This 

creates a challenge for legacy applications where it 

may be not practical to rewrite the applications in 

Java or where the source code is no longer available. 

Hadoop Streaming is designed to address this need 

by allowing users to create MapReduce jobs where 

any executable (written in any language or script) 

can be specified to be the map or reduce operations. 

Hadoop Streaming has a restricted model [4]; it is 

commonly used to run numerous scientific 

applications from various disciplines. It allows 

domain scientists to use legacy applications for 

complex scientific processing or use simple scripting 

languages that eliminate the sharp learning curve 

needed to  

Write scalable MapReduce programs for 

Hadoop in Java. Protein sequence comparison, 

tropical storm detection, atmospheric river detection 

and numerical linear algebra are a few examples of 

domain scientists using Hadoop Streaming on 

NERSC [5] systems [6].. 

Marissa: In earlier work, we highlighted both 

the performance penalty and application 

challenges of Hadoop Streaming and introduced 

MARISSA to address these shortcomings [4], 

[5]. MARISSA leaves the input management to 

the underlying shared file system to solely focus 

on processing. Unlike Hadoop Streaming, 

MARISSA does not require processes like 

TaskTrackers and DataNodes for execution of 

MapReduce operations. Once the input data is 

split by the master node using the Splitter 

module and placed into the shared file system, 

each worker node has access to the input chunks 

awaiting execution. Unlike Hadoop, MARISSA 

does not force manifest data locality – rather it 

leaves such optimizations to the shared file 

system. Each worker node points the target 

executables to the input splits they are 

responsible for, monitors the status of the local 

job, and informs the master when the local tasks 

are all completed. Compatibility with POSIX 

file-systems, the ability to run applications not 

using standard input and output, and the ease of 

iteration support are some of the features 

implemented within MARISSA that are often 

considered lacking in Hadoop. 
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II. MAPREDUCE STREAMING OVER 

CASSANDRA DATA 

A. MapReduce Streaming Pipeline for Cassandra 

Datasets 

In this paper, we introduce a MapReduce 

pipeline that can be used by MapReduce frameworks 

like Hadoop Streaming and MARISSA that offer 

MapReduce ability with not Java executables. This 

pipeline, shown in Figure 1, has three main stages: 

Data Preparation, Data Transformation (MR1) and 

Data Processing (MR2). 

1) Data Preparation:  

Data Preparation, Figure 1a, is the step 

where input datasets are downloaded from 

Cassandra servers to the corresponding file system – 

HDFS for Hadoop Streaming and the shared file 

system for MARISSA. In both of these frameworks, 

this step is starting in parallel. Cassandra allows 

exporting the records of a target dataset in JSON 

formatted files and using this built-in feature each 

node downloads the data from the local Cassandra 

servers to the file system. In experimental setup, 

each node that is running a Cassandra server is a 

worker node for the MapReduce framework in use. 

In experimental data have 3 columns. This choice 

aims to mimic storing Twitter user interaction logs 

in Cassandra. For 64 million records, we have 20GB 

data distributed through Cassandra servers with the 

replication factor set to 1. They implemented a set of 

tools to launch the process of exporting data from a 

Cassandra cluster. For each write request, Cassandra 

creates a commit log entry and writes mutated 

columns to an in-memory structure called as 

Memtable. This inmemory structure is written into 

an immutable data file named SSTable at a certain 

size limit or predefined period of time. In 

implementation, each worker connects in parallel to 

its local database 

 Server and flushes Memtables into 

SSTables After flushing data, a worker begins the 

exporting operations. Every worker collects the 

exported records in unique files stored on the shared 

file system. In MARISSA, they were able to 

introduce these tools into the Sash module. For 

Hadoop Streaming, however, they implemented 

additional tools to initiate the data preparation 

process in parallel on all worker nodes. Next, this. 

Data was placed into the HDFS using the put 

command from the Hadoop master node. In 

Hadoop’s case, the put operation includes splitting 

the input into chunks and placing those chunks 

throughout the HDFS cluster. In MARISSA, 

however, the worker nodes flush the data to the 

shared file system and later these data files are split 

by the master one-by-one for each core. 

2) Data Transformation (MR1):  

In the Data Preparation stage the input 

dataset from Cassandra servers is downloaded and 

placed into the shared file system or HDFS in JSON 

format. Moving the input dataset out of the database 

and into the file system also requires the exported 

data to be transformed into a format that can be 

processed by the target non-Java applications. 

Cassandra allows users to export its dataset as JSON 

formatted files. As Per assumption is that the target 

executables are legacy applications which are either 

impossible or impractical to be modified, the input 

data needs to be converted into a format that is liked 

by these target applications. For this reason, our 

software pipeline includes a MapReduce stage, 

Figure 1b, where JSON data can be converted into 

other formats. This phase simply processes each 

input record and converts it to another format, 

writing the results into the intermediate output files. 

This step does not include any data or processing 

dependencies between nodes and hence is a great fit 

for the MapReduce model. In fact, we only initiate 

the map stage of MapReduce since no reduce 

operations are needed. If necessary for the 

conversion of JSON files to the proper format, a 

reduce step may be added conveniently. They 

implemented this stage in Python scripts that can be 

run using either MARISSA or Hadoop Streaming 

without any modifications. As this is the first of a 

series of iterative MapReduce functions whose 

output will be used as the input by the following 

MapReduce streaming functions, we simply call this 

stage MR1. The system not only permits users to 

convert the dataset into the desired format but also 

makes it possible to specify the columns of interest. 

This is extremely useful when a vertical subset of 

the dataset is sufficient for the actual data 

processing. This stage helps to reduce data size, in 

turn affecting the performance of the next 

MapReduce stage in a positive manner. This 

performance gain is a result of fewer I/O and data 

parsing operations.  

3) Data Processing (MR2):  

This is the final step of the MapReduce 

Streaming pipeline shown in Figure 1. In Figure 1c 

they run the non-Java executables, which were the 

initial target applications, over the output data of 

MR1, as the data is now in a format that can be 
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processed. They use MARISSA and Hadoop 

Streaming to run executables as map and reduce 

operations. Since this is the second MapReduce 

stage in our pipeline we name it MR2. Any 

MapReduce streaming job being run after MR1 is 

considered an MR2 step.  

 

 

 

 

 

 

Fig. 2. Three different streaming approaches to process 

Cassandra datasets with MapReduce using non-Java 

executables. Figure (a) shows the architecture of using 

MARISSA for the MapReduce streaming pipeline in 

Figure 1. The data is first downloaded from the database 

servers to the shared file system, preprocessed for the 

target application and at the final stage processed with 

the user set non-Java executables. In (b), we show the 

layout of using Hadoop Streaming in such a setting where 

the dataset is also placed into the HDFS. Figure (c) 

shows the structure of Hadoop-C*, which we use to 

process Cassandra data directly from the local database 

servers using Hadoop with non-Java executables. 

B. MapReduce Streaming Pipeline with 

MARISSA 

As explained in Section I-A1, the Splitter 

module of MARISSA has been modified such that 

each worker connects to the local database server to 

take a snapshot of the input dataset in JSON format 

and place it into the shared file system. After the 

Data Preparation stage shown in Figure 1a the input 

is split and ready for Data Transformation. Figure 2a 

shows the architecture of MARISSA. It allows each 

non-Java executable to interact with the 

corresponding input splits directly without needing 

to mediate this interaction. In the stage of Data 

Transformation, each MARISSA mapper runs an 

executable to convert the JSON data files to the 

user-specified input format. These converted files 

are placed back into the shared file system. 

C. MapReduce Streaming Pipeline with Hadoop 

Streaming 

In the Data Preparation stage, each Hadoop 

worker connects to the local Cassandra server and 

exports the input dataset in JSON formatted files. 

Next, these files are placed into the HDFS using the 

put command. This distributes the input files among 

the DataNodes of the HDFS and later they are used 

as input for the Data Transformation stage. HDFS is 

a non-POSIX compliant file system that needs to use 

of HDFS API to interact with the files. Since 

Hadoop Streaming uses non-Java application for 

map and/or reduce, the assumption is that these 

executables do not use this API and therefore do not 

have quick access to the input splits. Hence, Hadoop 

TaskTrackers read the input from HDFS and feed 

into the executables for processing and collect the 

results to write back to the HDFS. In the Data 

Transformation step shown in Figure 1b, Hadoop 

Streaming requires our input conversion code to 

convert the input to the desired format and later Data 

Processing is performed on the output of this stage. 

Note that at the Data Processing stage the input is 

already in HDFS as it is the output of the previous 

MapReduce job. 

D. Hadoop-C* 

Hadoop-C* is the setup where a Hadoop 

cluster is co-located with a Cassandra cluster to 

provide an input source and an output placement 

alternative to the MapReduce operations. This setup, 

illustrated in Figure 2c, allows users to leave the 

input dataset on its own local Cassandra servers. We 

use Hadoop TaskTrackers to read the input records 

directly from the local servers to ensure data 

locality. That is, there is no need for taking a 

snapshot of the dataset and placing it into the file 

system for MapReduce processing. Therefore, no 

Data Preparation or Data Transformation steps are 

required. 

Before starting any of the map operations 

each Hadoop mapper starts the user specified non-

Java executable and later in each map it reads an 

input record from the database and converts it to the 

expected format – streaming it to the running 

application using stdin. Later, the output is collected 

back from this application, using stdout, which is 

then turned into a database record and written back 

to the Cassandra data store. This design has the 

limitation that the user specified applications should 

start before-hand and should expect an input record 

from stdin and write the output to stdout. Although 

we explain the limitations of such a model in [4], in 

this case we use it to provide in-place processing of 

Cassandra data for cases when it is not practical to 

constantly download data to the file system in order 

to process the most up-to-date version. 
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Figure 2c shows that DataNodes are running 

on each worker node, however, they are not used for 

input management. DataNodes are required since 

HDFS is used for dependency jars and other static 

and intermediary data. In the following sections we 

refer to this setup as Hadoop-C*. Furthermore, we 

will use the notation Hadoop-C*-FS for the cases 

when Hadoop TaskTrackers read the input records 

directly from the local Cassandra servers, but the 

output is collected in the shared file system. 

 

Fig. 2. Three different streaming approaches to process 

Cassandra datasets with MapReduce using non-Java 

executables. Figure (a) shows the architecture of using 

MARISSA for the MapReduce streaming pipeline in 

Figure 1. The data is first downloaded from the database 

servers to the shared file system, pre-processed for the 

target application and at the final stage processed with 

the user set non-Java executables. In (b), we show the 

layout of using Hadoop Streaming in such a setting where 

the dataset is also placed into the HDFS. Figure (c) 

shows the structure of Hadoop-C*, which we use to 

process Cassandra data directly from the local database 

servers using Hadoop with non-Java executables. 

CONCLUSION 

In order to fully exploit ”Big Data” sets, we 

need a software pipeline that can effectively 

combine the use of data stores such as Cassandra 

with scalable distributed programming models such 

as MapReduce. In this paper we show two different 

approaches, one working with the distributed 

Cassandra cluster directly to perform MapReduce 

operations and the other exporting the dataset from 

the database servers to the file system for further 

processing. We introduce a MapReduce streaming 

pipeline for the latter approach and use two different 

MapReduce streaming frameworks, Hadoop 

Streaming and MARISSA, to show the applicability 

of our system under different platforms. 

Furthermore, we present a detailed performance 

comparison of each approach under various 

application scenarios. Our results are summarized in 

Section V to help users make informed decisions for 

processing large Cassandra datasets with 

MapReduce using non-Java executables. 

ACKNOWLEDGMENT 

It is a great opportunity for me to express 

my profound gratitude towards our H.O.D, Prof. 

Dinesh. D. Patil who gave me the innovative idea of 

making this seminar & whose zeal & enthusiasm are 

source of inspiration for me. Also, I can't ignore the 

innumerable efforts undertaken by Prof. Dinesh. D. 

Patil, my Seminar Guide, Department of Computer 

Science & Engineering and I also would like to 

thank Prof. R.R.Singh, Seminar Incharge for his 

guidance and motivations. I would also like to thank 

all the staff members of Department of Computer 

Science & Engineering, Hindi Seva Mandal’s, Shri 

Sant Gadge Baba College of Engineering & 

Technology, Bhusawal, for their valuable assistance 

and support at all times. 

REFERENCES 

[1] J. Dean and S. Ghemawat. Mapreduce: simplified data 

processing on large clusters. Commun. ACM, 51(1):107–

113, Jan. 2008.  

[2] A. Lakshman and P. Malik. Cassandra: structured 

storage system on a p2p network. In Proceedings of the 

28th ACM symposium on Principles of distributed 

computing, PODC ’09, pages 5–5, New York, NY, USA, 

2009. ACM.  

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. 

The hadoop distributed file system. In Mass Storage 

Systems and Technologies (MSST), 2010 IEEE 26th 

Symposium on, pages 1 –10, May 2010.  

[4] E. Dede, Z. Fadika, J. Hartog, M. Govindaraju, L. 

Ramakrishnan, Gunter, and R. Canon. Marissa: 

Mapreduce implementation for streaming science 

applications. In E-Science (e-Science), 2012 IEEE 8th 

International Conference on, pages 1–8, 2012 

[5] Fadika, Zacharia and Govindaraju, Madhusudhan and 

Canon, Shane and Ramakrishnan, Lavanya. Evaluting 

hadoop for data-intensive scientific operations. IEEE 

Cloud Computing, 2012.  

[6] L. Ramakrishnan, P. T. Zbiegel, S. Campbell, R. 

Bradshaw, R. S. Canon, S. Coghlan, I. Sakrejda, N. Desai, 

T. Declerck, and A. Liu. Magellan: experiences from a 

science cloud. In Proceedings of the 2nd international 

workshop on Scientific cloud computing, ScienceCloud 

’11, pages 49–58, New York, NY, USA, 2011. ACM. 
 

 

 

 

 


