Coefficient Estimate for New Subclasses of Ma-Minda bi-Univalent Function

Dinesh Mittal
Department of Mathematics, Bhand Singh Khalsa College for Women, Kala Tibba, Abohar, India

Abstract—In this paper, we introduce and investigate new subclass $H^r_{\psi}(y, \alpha, \lambda, \psi)$ of Ma-Minda bi-univalent functions in the open unit disk $U = \{z: z \in C \text{ and } |z| < 1\}$. For functions belonging to this class, we obtain estimate for the initial coefficient $|a_3|$ and $|a_4|$. The results derived in this paper would generalize those in related works of several earlier authors.

Keywords—Bi-Univalent functions, Ma-Minda starlike and Ma-Minda convex function

I. INTRODUCTION

Let $C(k)$ denote the class of the functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disc $U = \{z: z \in C \text{ and } |z| < 1\}$. Also, let S denote the class of all functions in $C(k)$ which are univalent in U.

For each $f \in S$, the Koebe one-quarter theorem [3, p.31] states that the image of the open unit disk U under f contains a disk of radius $1/4$. Thus, every univalent function f has an inverse f^{-1}, which is defined by

$$f^{-1}(f(z)) = z, \quad z \in U$$

and

$$f(f^{-1}(w)) = w, \quad |w| < r_0(f) \geq 1/4,$$

where

$$f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \ldots.$$ (2)

A function $f \in C(k)$ is said to be bi-univalent in U. Let σ denote the class of bi-univalent functions defined in the open unit disk U. In 1967, Lewin [1] studied the class of bi-univalent functions and obtained bound $|a_3| \leq 1.51$ for every $f \in \sigma$. Subsequently, Brannan and Clunie [2] conjectured that $|a_2| \leq \sqrt{2}f$ for $f \in \sigma$. Netanyahu [4], on the other hand, proved that $\max_{f \in \sigma} |a_2| = 4/3$. The coefficient estimate problem for Taylor-Maclaurin coefficient $|a_n|$ for $n \in N - \{1,2,3\}$ is presumably still an open problem. Some of the important and well investigated subclasses of the univalent function class S include the class $S^\ast(\alpha)$ of starlike functions of order α in U and the class $K(\alpha)$ of convex functions of order α in U which are defined as

$$S^\ast(\beta) = \{f \in S: \text{Re}\left(\frac{zf'(z)}{f(z)}\right) > \beta \quad (0 \leq \beta < 1; z \in U)\}$$ (3)

and

$$K(\beta) = \{f \in C(k): \text{Re}\left(1 + \frac{zf'(z)}{f(z)}\right) > \beta \quad (0 \leq \beta < 1; z \in U)\}.$$ (4)

It readily follows from the definition (3) and (4) that

$$f \in K(\beta) \iff zf^{-1} \in S^\ast(\beta).$$

Earlier, Brannan and Taha [5] (see also [6]) introduced certain subclasses of bi-univalent function class σ, namely $S^\ast_\sigma(\alpha)$ and $K_\sigma(\alpha)$ of bi-starlike and bi-convex functions of order α ($0 < \alpha \leq 1$), respectively. Thus, following Brannan and Taha [5] (see also [6]), a function $f \in C(k)$ is in the class $S^\ast_\sigma(\alpha)$ and $K_\sigma(\alpha)$ of strongly bi-starlike and strongly bi-convex functions of order α ($0 < \alpha \leq 1$), if both $f(z)$ and $f'(z)$ are strongly starlike and strongly convex functions of order α, corresponding (respectively) to the function classes $S^\ast(\alpha)$ and $K(\alpha)$, were introduced analogously. For each of the function classes $S^\ast_\sigma(\alpha)$ and $K_\sigma(\alpha)$, non sharp estimates were found on the first two Taylor-Maclaurin coefficient $|a_3|$ and $|a_4|$ (for details, see [5] [6]).

An analytic function $f(z)$ is subordinate to an analytic function $g(z)$, written $f(z) \prec g(z)$, if there exist Schwarz function w in $C(k)$, with $w(0) = 0$ and $|w(z)| < 1$. Satisfying $f(z) = g(w(z))$. In particular, when g is univalent, then the above subordination is equivalent to $f(0) = 0$ and $f(U) \subset g(U)$. Ma and Minda [7] unified various subclasses of starlike and convex functions for which either of the quantities $zf'(z)/f(z)$ or $1 + zf'(z)/f(z)$ is subordinate to a more general superordinate function. For this purpose, they considered an analytic univalent function φ with positive real part in the open unit disk U, which maps U onto a region symmetric with respect to the real axis and starlike with respect to $\varphi(0) = 1$ and $\varphi'(0) = 0 > 0$. Such a function has series expansion of the form

$$\varphi(z) = 1 + B_1z + B_2z^2 + B_3z^3 + \ldots \ldots \ldots \ldots$$ ($B_1 > 0$).

The classes $S^\ast(\varphi)$ and $K(\varphi)$ of Ma-Minda starlike and Ma-Minda convex functions consists of function $f \in C(k)$ respectively characterized by $zf'(z)/f(z) \prec \varphi(z)$ or $1 + zf'(z)/f(z) \prec \varphi(z)$. A function $f(z)$ is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both $f(z)$ and $f^{-1}(z)$ are respectively Ma-Minda type starlike or convex. These classes are denoted...
\[1 + \frac{1}{f} \left(1 - \alpha + 2\lambda \right) \left(f'(z) \right)^{1/2} + \left(\alpha - 3\lambda \right) \left(f'(z) \right)^{1/2} + \frac{\lambda \left[1 + \frac{z}{f'(z)} \left(f'(z) \right)^{3/2} - 1 \right]}{\varphi(z)} \] (6)

and

\[1 + \frac{1}{f} \left(1 - \alpha + 2\lambda \right) \left(\frac{g(w)}{w} \right)^{1/2} + \left(\alpha - 3\lambda \right) \left(\frac{g(w)}{w} \right)^{1/2} + \frac{\lambda \left[1 + \frac{w}{g(w)} \left(g'(w) \right)^{3/2} - 1 \right]}{\varphi(w)} , \] (7)

where \(g(w) = f'(w) \).

It is interesting to note that, for suitable choices of \(\gamma, \alpha, \lambda \) and \(\psi \), lead the class \(H^\alpha_\sigma(\gamma, \alpha, \lambda, \psi) \) to various following known subclasses.

1. \(H^\alpha_\sigma(\gamma, \alpha, \lambda, \psi) = H^\alpha_\sigma(\gamma, \alpha, \lambda, \psi) \) \((\alpha \geq 0, \lambda \geq 0, \gamma \in C - \{0\}) \) (see Ramachandran, Prabhu and Magesh [19], inequality 2.11)
2. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \psi, \psi) = H^\alpha_\sigma(\gamma, \lambda, \psi) \) \((\lambda \geq 0, \gamma \in C - \{0\}) \) (see Tudor [8, Definition 2.1])
3. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda + \lambda^2 \phi^2 z^2, \lambda + \lambda^2 \phi^2 z^2) = H^\alpha_\sigma(\gamma, \lambda, \lambda) \) \((\lambda \geq 0, \gamma \in C - \{0\}, -1 \leq B < A \leq 1) \) (see Bansal [12, Definition 1.1])
4. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \theta < \pi/2 \) is discussed and considered by Swaminathan [15, Definition 1.1])
5. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi < \pi/2 \) is discussed and considered by Lin [18]
6. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]
7. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]
8. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]
9. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]
10. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]
11. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]
12. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]
13. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]
14. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]
15. \(H^\alpha_\sigma(\gamma, 1 + 2\lambda, \lambda z^{3/2}, 1/2) \) for \(\gamma = e^{i\eta} \cos \theta \) \(0 \leq \pi < \pi/2 \) is discussed and considered by Lin [18]

II. COEFFICIENT ESTIMATES FOR THE FUNCTION CLASS \(H^\alpha_\sigma(\gamma, \alpha, \lambda, \psi) \)

In order to derive our results, we shall need the following lemma.

Lemma 2: [21] If \(h \in P \), then \(|h_k| \leq 2 \) for each \(k \), where \(P \) is the family of all functions \(h \), analytic in \(U \), for which

\[\text{Re}(h(z)) > 0 \quad (z \in U), \]

where

\[h(z) = 1 + c_1z + c_2z^2 + \ldots \quad (z \in U) \]

Theorem 3: If \(f \in H^\alpha_\sigma(\gamma, \alpha, \lambda, \psi) \), then

\[|a_3| \leq \frac{\sqrt{|\gamma|^2 \lambda^2}}{\sqrt{1 + (\alpha + 2\lambda)(\mu + \lambda^2)}} \]

(8)
\[|a_\gamma| \leq \frac{|\gamma|B_1}{\mu + 2\alpha + 2\lambda} + \frac{|\gamma|^2 B_1^2}{(\mu + a)^2} \]

(9)

Proof: Since \(f \in H^2_\infty(\gamma, \alpha, \lambda, \psi) \), there exist two analytic functions \(u, v : U \to U \), with \(u(0) = 0 = v(0) \), satisfying

\[1 + \frac{1}{\gamma} \left((1 - \alpha + 2\lambda) \left(\frac{f(z)}{z} \right)^\mu + (\alpha - 3\lambda) \frac{f'(z)}{f(z)} \right) + \lambda \left[1 + z \frac{f'(z)}{f(z)} \right] (f'(z))^{\mu - 1} < \varphi(u(z)) \]

(10)

and

\[1 + \frac{1}{\gamma} \left((1 - \alpha + 2\lambda) \left(\frac{g(w)}{w} \right)^\mu + (\alpha - 3\lambda) \frac{g'(w)}{g(w)} \right) + \lambda \left[1 + w \frac{g'(w)}{g(w)} \right] (g'(w))^{\mu - 1} < \varphi(v(w)). \]

(11)

Define the function \(c \) and \(d \) by

\[c(z) = \frac{1+u(z)}{1-u(z)} = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots, \]

(12)

and

\[d(z) = \frac{1+v(z)}{1-v(z)} = 1 + d_1 z + d_2 z^2 + d_3 z^3 + \cdots. \]

(13)

or equivalently

\[u(z) = \frac{c(z)+1}{c(z)-1} = \frac{1}{2} \left(c_1 z + \left(c_2 + \frac{c_1^2}{2} \right) z^2 + \left(c_3 + \frac{c_1 c_2}{2} \right) z^3 + \cdots \right) \]

(14)

and

\[v(z) = \frac{d(z)+1}{d(z)-1} = \frac{1}{2} \left(d_1 z + \left(d_2 + \frac{d_1^2}{2} \right) z^2 + \left(d_3 + \frac{d_1 d_2}{2} \right) z^3 + \cdots \right). \]

(15)

it is clear that \(c(z) \) and \(d(z) \) are analytic having positive real part in \(U \) and \(c(0) = 1 = d(0) \). \(|c| \leq 2 \) and \(|d| \leq 2 \). In view of (10), (11), (14) and (15), clearly

\[1 + \frac{1}{\gamma} \left((1 - \alpha + 2\lambda) \left(\frac{f(z)}{z} \right)^\mu + (\alpha - 3\lambda) \frac{f'(z)}{f(z)} \right) + \lambda \left[1 + z \frac{f'(z)}{f(z)} \right] (f'(z))^{\mu - 1} < \varphi \left(\frac{c(z)-1}{c(z)+1} \right) \]

(16)

and

\[1 + \frac{1}{\gamma} \left((1 - \alpha + 2\lambda) \left(\frac{g(w)}{w} \right)^\mu + (\alpha - 3\lambda) \frac{g'(w)}{g(w)} \right) + \lambda \left[1 + w \frac{g'(w)}{g(w)} \right] (g'(w))^{\mu - 1} < \varphi \left(\frac{d(w)-1}{d(w)+1} \right). \]

(17)

Using (14) and (15) together with (5), we get

\[\varphi \left(\frac{c(z)-1}{c(z)+1} \right) = 1 + \frac{1}{\gamma} B_1 c_1 z + \left(\frac{1}{\gamma} B_1 \left(c_2 - \frac{1}{2} c_1^2 \right) + \frac{1}{4} B_2 c_1^2 \right) z^2 + \cdots \cdots \cdots \]

(18)

and

\[\varphi \left(\frac{d(w)-1}{d(w)+1} \right) = 1 + \frac{1}{\gamma} B_1 d_1 z + \left(\frac{1}{\gamma} B_1 \left(d_2 - \frac{1}{2} d_1^2 \right) + \frac{1}{4} B_2 d_1^2 \right) z^2 + \cdots \cdots \cdots \]

(19)

It follows from (14), (15), (18) and (19) that

\[\frac{1}{\gamma} (\mu + \alpha) a_\gamma = \frac{1}{\gamma} B_1 c_1 \]

(20)

\[\frac{(2x+2\lambda+\mu)}{\gamma} a_\gamma + \frac{(\mu-1)(2x+2\lambda+\mu)}{2\gamma} a_\gamma^2 = \frac{1}{\gamma} B_1 \left(c_2 - \frac{1}{2} c_1^2 \right) + \frac{1}{4} B_2 c_1^2 \]

(21)

\[\frac{1}{\gamma} (\mu + \alpha) a_\gamma = \frac{1}{\gamma} B_1 d_1 \]

(22)

\[\frac{(2x+2\lambda+\mu)}{\gamma} a_\gamma + \frac{(\mu-1)(2x+2\lambda+\mu)}{2\gamma} a_\gamma^2 = \frac{1}{\gamma} B_1 \left(d_2 - \frac{1}{2} d_1^2 \right) + \frac{1}{4} B_2 d_1^2 \]

(23)

From (20) and (22), we have

\[c_1 = -d_1 \]

(24)

and

\[\frac{\theta(\mu+\alpha)^2}{\gamma} a_\gamma^2 = B_1^2 \left(c_1^2 + d_1^2 \right). \]

(25)

from (21), (23) and (25), we get

\[a_\gamma^2 \leq \frac{\gamma^2 \theta(\mu+\alpha)^2}{2\gamma} \frac{B_1^2 (c_1^2 + d_1^2)}{\theta(\mu+\alpha)^2}. \]

(26)

by using Lemma, we get the desired estimate on \(|a_\gamma| \) as

\[|a_\gamma| \leq \frac{|\gamma|B_1}{\mu + 2\alpha + 2\lambda} + \frac{|\gamma|^2 B_1^2}{(\mu + a)^2} \]

by subtracting (21) and (23) yields
by using Lemma, we get the desired estimate on $|a_3|$ as

$$|a_3| \leq \frac{|y|}{\mu + 2\alpha + 2\lambda} + \frac{|y|^2}{(\mu + \alpha)^2}.$$

Remark 4:- Taking $\mu = 1$ in Theorem 3, we obtain the corresponding result given earlier by Ramachandran [19]. For $\mu = 1$ and $\lambda = 0$ in Theorem 3 we have result of Tudor [8]. For $\mu = 1$, $\gamma = 1$ and $\alpha = 1 + 2\lambda$ in Theorem 3 we have result of Kumar and Ravichandran [9]. For $\mu = 1$, $\gamma = 1$, $\lambda = 0$ and $\alpha = 1$ in Theorem 2.2, we have result by Ali, Lee, Ravichandran and Supramaniam [11].

If we set $\varphi(z) = \frac{1 + \alpha z}{1 + \beta z} - 1 \leq B < A \leq 1$ in the class $H_\mu^\gamma(y, \alpha, \lambda, \psi)$ we have $H_\mu^\gamma(y, \alpha, \lambda, \frac{1 + \alpha z}{1 + \beta z})$ and defined as

$$1 + \frac{1}{\gamma} \left(1 - \alpha + 2\lambda \right) \left(\frac{f(z)}{z}\right)^\mu + (\alpha - 3\lambda) \left(\frac{f'(z)}{f(z)}\right)^\mu + \lambda \left[1 + z \left(\frac{f''(z)}{f'(z)}\right) \left(f'(z)\right)^\mu - 1\right] < \frac{1 + \alpha z}{1 + \beta z},$$

and

$$1 + \frac{1}{\gamma} \left(1 - \alpha + 2\lambda \right) \left(\frac{g(w)}{w}\right)^\mu + (\alpha - 3\lambda) \left(\frac{g'(w)}{g(w)}\right)^\mu + \lambda \left[1 + w \left(\frac{g''(w)}{g'(w)}\right) \left(g'(w)\right)^\mu - 1\right] < \frac{1 + \alpha z}{1 + \beta z},$$

where $g(w) = f'(w)$

Corollary 5:- If $f \in H_\mu^\gamma(y, \alpha, \lambda, \frac{1 + \alpha z}{1 + \beta z})$, then

$$|a_2| \leq \frac{|\gamma|}{\sqrt{\gamma (\mu + 1)(\mu + 2\alpha + 2\lambda)}}$$

and

$$|a_3| \leq \frac{|\gamma|^2}{\mu + 2\alpha + 2\lambda}.$$

