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Abstract: Mathematical models of growth have been 

developed a long period of time. Estimating the lag time in the 

growth process is a practically important problem. Any 

sigmoidal function can be good illustration for the concept of 

lag time. The Stannard growth model is described by 4 free 

parameters, each contributing to the characteristics of the 

curve: an initial lag or period of slow growth; a period of 

rapid exponential growth; a period of reduced growth rate. In 

this note we provide more precise estimates for the one–sided 

Hausdorff approximation of the Heaviside step–function by 

sigmoidal Stannard function - ( new lagt  ). Numerical examples, 

illustrating our results are given, too. 

Keywords— sigmoidal Stannard function; interval step 

function; Hausdorff distance; upper and lower bounds; lag 

time. 

I.     INTRODUCTION 

Several sigmoidal functions (logistic [32],[31], Gompertz [8], 

Richards [24], [30], [34], [15], Chapman–Richards (based on 

the Von Bertalanffy’s approach [4]), Schnute [25], and 

Stannard [28], [12], [35], [23]) were compared to describe a 

growth curve. Growth curves are found in a wide range of 

disciplines, such as biology, chemistry and medical science. 

Estimating the lag time in the growth process is a practically 

important problem. Nevertheless, any sigmoidal function can 

be good illustration for the concept of lag time. The growth 

model is described by free parameters, each contributing to 

the characteristics of the sigmoidal function. These parameters 

may be useful for describing biologically relevant metrics as a 

lag phase, the growth phase, and the plateau phase. The lag 

time - lagt  (see Fig. 1) is estimated by extending the tangent at 

inflection point to the initial baseline. The Stannard curve is 

described by 4 free parameters, each contributing to the 

characteristics of the curve: an initial lag or period of slow 

growth; a period of rapid exponential growth; a period of 

reduced growth rate. The Stannard function finds applications 

in many scientific fields, including population dynamics, 

bacterial growth, population ecology, plant biology, 

chemistry, demography, financial mathematics, statistics and 

fuzzy set theory. For some modelling aspects and parameter 

estimations, see [3], [27], [2], [29], [33], [6], [13]. The 

alternative definition of the 
'

lagt  is given by Arosio, Knowles 

and Linse in [2]. The 
'

lagt  is defined as the point in time where 

the signal relative to the pre–transition baseline has reached 

10%  of the amplitude of the transition. In this note we prove 

more precise estimates for the one–sided Hausdorff 

approximation of the interval Heaviside step–function by 

sigmoidal Stannard function - ( new lagt  ). Let us point out that 

Hausdorff distance is the most natural measuring criteria for 

the approximation of bounded discontinuous function [1], 

[16]. 

   
  

Figure 1: Definitions: a) lagt  - is estimated by extending the 

tangent at inflection point to the initial baseline; b) new lagt   - 

the one–sided Hausdorff approximation of the Heaviside step–

function by sigmoidal Stannard function. 

II.   PRELIMINARIES 

Definition 1. Define the interval Heaviside step function as:  

0

0, if < 0,

( ) = [0, ] if = 0,

, if > 0.
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Definition 2. Define the sigmoidal Stannard function 

( ; , , , )S t k m M
 on R  as:  
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 where M  is the upper asymptote;   is the growth 

displacement; k  is the growth rate; m  is the slope of growth. 

   
  

Figure  2: Approximation of the Heaviside step function by 

Stannard sigmoidal function about Hausdorff distance: 

=100k , =1.2m , = 0.1 , =1M ; Hausdorff distance 

= 0.034057d . 
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Figure  3: Approximation of the Heaviside step function by 

Stannard sigmoidal function about Hausdorff distance: 

= 50k , =1.1m , = 0.1 , = 4M ; Hausdorff distance 

= 0.0796847d . 

Definition 3. The Hausdorff distance (H-distance) ( , )f g  

between two interval functions ,f g  on  R , is the 

distance between their completed graphs ( )F f  and ( )F g  

considered as closed subsets of R  [9], [26]. More 

precisely,  

( )( )

( , ) = max{ || ||,sup inf
B F gA F f

f g A B


  (3) 

                              
( )( )

|| ||},sup inf
A F fB F g

A B


   

wherein || . ||  is any norm in 
2R , e. g. the maximum norm 

|| ( , ) ||= max{| |,| |}t x t x ; hence the distance between the 

points = ( , )A AA t x , = ( , )B BB t x  in 
2R  is 

|| ||= (| |,| |)A B A BA B max t t x x   . 

III.     MAIN RESULTS 

We study the Hausdorff approximation of the Heaviside step 

function 0 ( )h t  by sigmoidal Stannard function 

( ; , , , )S t k m M
 and find an expression for the error of the 

best one–sided approximation. The Hausdorff distance d  

satisfies the relation (see, Fig. 1)  
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The following Theorem gives upper and lower bounds for d  

Theorem 3.1.  For the one–sided Hausdorff distance 

= ( , , , )d d k m M  between the function 0 ( )h t  and the 

Stannard function ( ; , , , )S t k m M
 the following 

inequalities hold for 
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 Proof. We need to express d  in terms of k ,  , m  and 

M , using (4). Let us examine the function  
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 From ( ) < 0F d  we conclude that the function F  is 

strictly monotonically decreasing. Consider function  

1
( ) = 1 .

1 1

m m

m m m

M kM
G d d

e e e
  


 

 
 
 

  
    
     

    

  

 From Taylor expansion  
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we obtain 
2( ) ( ) = ( )G d F d O d . Hence ( )G d  

approximates ( )F d  with 0d   as 
2( )O d  (see, Fig. 4). 

In addition ( ) < 0G d . Further, for 
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 we have  
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This completes the proof of the theorem. 

 
  

Figure 4: The functions ( )F d  and ( )G d  for =100k , 

= 0.1 , =1.2m , =1M . 

The ”new” lag time is then given in terms of the one–sided 

Hausdorff distance - d . 

IV.     COMPUTATIONAL ISSUES 

Some computational examples using relations (5) are 

presented in Table 1. The last column of Table 1 contains the 

values of d  computed by solving the nonlinear equation (4).  

 

0.0005 100 0.99 4 0.0099417 0.0526419 0.0448138

0.1 50 1.1 4 0.020513 0.0935269 0.0796847

0.2 100 2 2 0.010138 0.0405115 0.0385117

0.1 100 1.2 1 0.00997894 0.0381641 0.034057

0.15 25 1.1 1 0.0366494 0.0958873 0.0947611

0.2 500 0

l rk m M d d d

.99 1 0.00220615 0.0121895 0.00966098

0.1 5000 1 1 0.000210348 0.00164542 0.00134239

  

Table  1: Bounds for d  computed by equation (4) for various 

 , k , m  and M  

   

  

 
  

Figure 5: Simple module implemented in programming 

environment  CAS Mathematica for calculation of the value of 

the one–sided Hausdorff distance d  between the Heaviside 

step function and the sigmoidal Stannard function. 

Simple module in  CAS Mathematica for calculation of the 

value of the one–sided Hausdorff distance d  between the 

Heaviside step function and the sigmoidal Stannard function 

is visualized on Figure 5. 

Some computational examples are presented on Figure 6. 
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Figure  6: An example of the usage of dynamical and 

graphical representation. The plots are prepared using  CAS 

Mathematica. 

   

Definition 4. Define the 6–parameters Stannard growth 

function 
1 ( )S t

 on R  as: 
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where the linear part 1 1a b t  described the lag–phase (see 

Fig. 7).  

 

 
  

Figure 7: 6–parameters Stannard growth function (6) with: 

=10k , = 0.99m , = 0.1 , 1 = 0.05a , 1 = 0.001b , 

2 = 0.5a . 

Definition 5. Define the 7–parameters Stannard growth 

function 2 ( ))S t
 on R  as:  
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(7) 

where the linear part 2 2a b t  described the equilibrium 

baselines (see Fig. 8). 

 

 

 
  

Figure 8: 7–parameters Stannard growth function (7) with: 

=15k , =1.2m , = 0.2 , 1 = 0.1a , 1 = 0.02b , 

2 = 0.9a , 2 = 0.01b . 

   

 

 

 

Definition 6. Define the shifted interval Heaviside step 

function 
t
m

h  as:  
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Definition 7. Define the shifted Stannard growth function 

( )t
m

S t
 with jump at point mt  as:  
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We next focus on the approximation of the shifted interval 

Heaviside step function t
m

h  by shifted Stannard growth 

function ( )t
m

S t
. 

V.     FITTING THE NONLINEAR SHIFTED 

STANNARD GROWTH MODEL AGAINST 

EXPERIMENTAL OIL PALM DATA [12], [7] 

Example. The oil palm yield growth data is given in Table 2. 

(9)

4 11.78 11.3382

5 18.43 18.1988

6 25.21 24.7753

7 30.78 29.9221

8 33.03 33.4182

9 35.66 35.5881

10 36.96 36.8639

11 37.97 37.591

12 38.04 37.9981

13 39.20 38.2239

14 36.50 3

Year Weight The appropriate fitting by

shifted Stannard function

8.3484

15 37.21 38.4108

16 39.97 38.4544

17 38.45 38.475  

Table  2: The oil palm yield data [12], [7] 

 The appropriate fitting of the experimental data by the shifted 

Stannard growth function ( )t
m

S t
 (9) with = 38.5M , 
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= 2.11 , =1.36k , = 2.26m , = 5mt  is visualized on 

Figure 9 (see also the last column of Table 2). 

 

 

Figure  9: The appropriate fitting of experimental data by the 

shifted Stannard growth function ( )t
m

S t
 with = 38.5M , 

= 2.11 , =1.36k , = 2.26m , = 5mt . 

CONCLUSION REMARKS 

New estimates for the H–distance between a interval Heviside 

step function and its best approximating Stannard function are 

obtained. We propose a modified new–lag–time in terms of 

Hausdorff distance - d . 

Based on the methodology proposed in the present note, the 

reader may formulate the corresponding approximation 

problems on his/her own. 

On a number of computational examples we demonstrate the 

applicability of the Stannard growth function to approximate 

the Heaviside step function and consequently to be employed 

in fitting time course experimental data related to population 

dynamics. 

The Hausdorff approximation of the interval step function by 

the logistic and other sigmoid functions is discussed from 

various approximation, computational and modelling aspects 

in [5], [14], [21], [18], [10], [11], [19], [20], [17], [22]. 
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