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Abstract: As the rapidly growing volume of data are beyond 

the capabilities of many computing infrastructures, to securely 

process them on cloud has become a preferred solution which 

can both utilize the powerful capabilities provided by cloud 

and protect data privacy. This paper presents an approach to 

securely decompose a tensor, a mathematical model widely 

used in data-intensive applications, to a core tensor multiplied 

with a certain number of truncated orthogonal bases. The 

unstructured, semi-structured, and structured data are 

represented as low-order sub-tensors which are then encrypted 

using the fully homomorphic encryption scheme. A unified 

high-order cipher tensor model is constructed by collecting all 

the cipher sub-tensors and embedding them to a base tensor 

space. The cipher tensor is decomposed through a proposed 

secure algorithm, in which the square root operations are 

eliminated during the Lanczos procedure. Theoretical analyses 

of the algorithm in terms of time complexity, memory usage, 

decomposition accuracy, and data security are provided. 

Experimental results demonstrate that the approach can 

securely decompose a tensor.With the advancement of fully 

homomorphic encryption scheme, it can be expected that the 

secure tensor decomposition approach has the potential to be 

applied on cloud for privacy-preserving data processing. 

 

Keywords: Tensor Decomposition, Fully Homomorphic 

Encryption, Lanczos Method, Cloud. 

I. INTRODUCTION 

The size of data in many fields is rapidly increasing towards 

Terabyte level or even Petabyte level, as well as the data 

structures are becoming more varied. The large scale 

heterogeneous data have posed great challenges on current 

computing infrastructures, and new approaches are in urgent 

need to address them. Cloud Computing  is a model that can 

enable ubiquitousand convenient network access to a shared 

pool of configurable computing resources such as platforms, 

software and services. A cloud infrastructure is the collection 

of hardware and software which can provide capabilities to the 

consumers on a pay-per-use or chargeper- use basis. It is a 

quite feasible approach to upload the large scale data to cloud 

for deeply processing and mining such as dimensionality 

reduction , classification , and prediction . However, carrying 

out such types of tasks on cloud may cause a series of security 

problems including loss of privacy, disclosure of business 

information, data tamper, etc. Therefore, thestudy of secure 

data mining and data analyzing on cloud is of great necessity 

as it is an efficient method to extract valuable information from 

the large scale heterogeneous data. The fully homomorphic 

encryption scheme, which is suggested in 1978 by Rivest, 

Adleman, Dertouzos , allows specific types of computations to 

be performed on the cyphertext to generate an encrypted result, 

of which the decryption is identical to the result obtainedby 

directly carrying out operations on the plaintext. The ideal 

lattice based scheme proposed by Gentry in 2009 solves the 

problem of limited number of operations of fully homomorphic 

encryption, which paves the way for trusted computing on 

cloud. The Learning with Errors (LWE) scheme reported in is 

more practical to be employed in data-intensive applications. 

Although the mentioned schemes provide both additive and 

multiplicative homomorphisms, they can cause decryption 

errors when be used by algorithms including non-

homomorphic operations such as square root and division, 

which are frequently used operations during data processing. 

Many heterogenous data are modeled as tensors [8, 9], a type 

of high dimension matrix widely used in many applications. 

Tensor decomposition is a powerful tool to extract valuable 

information from large scale raw data. The decomposition is 

computationally expensive and is strongly suggested to be 

performed on cloud. Therefore, it is necessary to investigate 

approaches for secure tensor decomposition on cloud and 

address the challenges caused by non-homomorphic 

operations. However, little research has been devoted to such 

type of method.This paper presents a new computing approach 

which can securely decompose the tensor model generated 

from large scale heterogeneous data.  

The major contributions are summarized as follows. 

 We present a holistic framework to address the problem 

of secure tensor decomposition on cloud. The framework 

not only allows us to utilize the powerful computational 

capabilities of the cloud, but also ensures data security 

during the process of tensor decomposition. 

 We introduce a Unified Cipher Tensor (UCT) model for 

heterogeneous data representation. The detailed 

procedures of how to encrypt the low-order sub-tensors 

constructed from heterogeneous datas cipher counterparts 

using the fully encryption scheme, as well as how to 

embed them to a base tensor space to generate a unified 

cipher tensor model are illustrated in this paper. 

 We propose to employ the Lanczos method to decompose 

the generated cipher tensor model to a core tensor and a 

certain number of truncated orthogonal bases. A secure 

tensor decomposition algorithm is designed in which the 

nonhomomorphic square root operations are removed 

during the Lanczos procedure. Theoretical analyses of the 

algorithm in terms of time complexity, memory usage, 

decomposition accuracy, and data security are provided. 

 

II. PRELIMINARIES 

In this section, the preliminaries on tensor decomposition, fully 

homomorphic encryption, and Lanczosmethod are reviewed.  

A. Tensor Decomposition 

Tensor is a type of high dimension matrix widely used in many 

applications  such as computer vision, data mining, graph 



International Journal of Trend in Research and Development, Volume 3(2), ISSN: 2394-9333 

www.ijtrd.com 

IJTRD | Mar-Apr 2016 

Available Online@www.ijtrd.com     493 

j 

analysis and signal processing. High- Order Singular Value 

Decomposition (HO-SVD)  isa type of approach that can 

factorize the tensor to a core tensor multiplied with a number 

of truncated orthogonal matrices. Let T ∈R
I1

×
I2

×:::×
IN 

denote 

an N- th order tensor model, S and ^ T refer to the core tensor 

and approximate tensor respectively, then the HO-SVD method 

is defined as 

S=T×1U1
T

×2U2
T

...×NUN
T

, 

T̂=S×1U1×2U2...× NUN(1) 

 

The i-mode product T×iU; 1 ≤ i ≤ N, of a tensor by a matrix in 

Eq. (1) is defined as 

(2)  
wheretj1j2…ji-1jiji+1…jiand ukijirefer to the elements of tensor T and 

matrix U,respectively. 

 

For example, Fig. 1 demonstrates the generated core tensor S 

and the truncated bases U1, U2, U3 by decomposing the initial 

tensor T. The 4 by 4 by 3 tensor is decomposed to a 2 by 2 by 2 

core tensor, two matrices of 4 by 2 and a matrix of 3 by 2. 

Generally, the core tensor and the truncated bases are 

considered as a compressed version of the initial tensor T. The 

reconstructed data in the approximate TensorT̂are of higher 

quality than the raw data as the noise, inessential and 

inconsistent data are removed. 

B. Fully Homomorphic Encryption 

Homomorphic encryption is a new type of scheme that allows 

specific types of operations to be performed on the cyphertext 

to obtain the encrypted result, of which the decryption is 

identical to the result directly computed by performing 

operations on the plaintext. Two fully homomorphic 

encryption schemes [6, 11] are proposed using ideal lattice and 

polynomial ring, respectively. A Ring Learning with Errors 

(RLWE) base fully homomorphic encryption scheme without 

bootstrapping is proposed , where a General Learning with 

Errors (GLWE) based scheme is reported.The encryption 

scheme supports the homomorphism of addition and 

multiplication, which can be described as follows 

 

Enc(m1) + Enc(m2) = Enc(m1 + m2); 

Enc(m1 × m2) = Enc(m1) × Enc(m2): (3) 

 
Fig 2 demonstrates homomorphic encryption of an addition 

operation. Let m1, m2 be two elements in the plaintext, c1, c2 

in the ciphertext, and c1 = Enc(m1),c2=Enc(m2), then m1+m2 

= Dec(Enc(m1)+Enc(m2)). 

 
C. Lanczos Method 

The Lanczosmethod  is efficient for computingthe eigenvalues 

and eigenvectors of a sparse symmetric matrix. It transforms 

the matrix M with an orthogonal matrix W, where W = [w1,. 

,.wk] and W
T
W = I, to a tridiagonal matrix as follows 

(4) 

Equating columns in the expression MW = WL, the tridiagonal 

matrix L can be generated by carrying out the iteration 

procedures 

αj=wTMwj, 

rj=Mwj−αjwj−βjwj−1, 

βj+1=∥rj∥2,wj+1=rj/βj+1.(5) 

The components of α,β,rcan be progressively calculated. Let 

the eigenvalue decomposition of matrix L be defined as L = 

Q^QT, then the eigenvalues and eigenvectors of matrix M are ^ 

and WQ, respectively. In the matrix-vector product is the 

frequently called 

linear transformation during the Lanczos procedure. 

 

III. PROBLEM DEFINITION AND 

SOLUTIONFRAMEWORK 

This section formalizes the problem of secure tensor 

decomposition on the bases of the fully homomorphic 

encryption scheme, and provides an overview of the proposed 

solution framework. 

A. Problem Definition 

Heterogeneous data consist of unstructured data Du, semi 

structured data Dsemi, and structured data Ds. Let core denote 

the core data including the core tensor S and the truncated 

orthogonal bases U1, U2,….,UN, then the secure tensor 

decomposition problem can be formalized as 

 

fr:{Enc(Du),Enc(Dsemi),Enc(Ds)} →Enc(T), 

fd:Enc(T) →{Enc(S),Enc(U1), …. , Enc(UN)}:           (6) 
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In Eq. (6)the data representation function fr integrates all 

encrypted data as a unified cipher tensor model (UCT), on 

which the decomposition function fd is performed to generate 

the encrypted core tensor as well as the encrypted truncated 

orthogonal bases. 

As the decomposition operations are carried on the encrypted 

data, the user’s privacy are protected. In order to guarantee the 

correctness of the decomposition resultEq. (6) satisfies S = 

T×1U1
T
×2U2

T
….×NUN

T
. Accordingto the fully homomorphic 

encryption scheme, the securedecomposition process satisfies 

the following equation 

Dec(sk; Eva(pk; Cfd; Enc(T))) = Cfd(T); (7) 

where Eva, Enc, Dec refer to the evaluation, encryption,and 

decryption function, pkand skdenote the public keyand private 

key, Cfdrefers to the boolean circuits of thetensor 

decomposition function fddefined in Eq. (6). 

The homomorphism can be guaranteed by performing addition, 

subtraction, and multiplication operations on the cipher data 

during the tensor decomposition process. However, new 

challenges arise when the nonhomomorphic operations such as 

square root and division are adopted in some types of 

decomposition methods, for example, Lanczos-based 

algorithm. A secure tensor decomposition algorithm is 

proposed in this paper to address these challenges. 

For convenience, in the following sections this paper adopts 

the symbol ΨE to denote the cipher data in gtothepla in 

dataΨ, namely ΨE=Enc(Ψ).Therefore, the encrypted tensor 

Enc(T) is denoted as TE. 

B. Overview of the Solution Framework 

To address the problem defined above, this paper proposes a 

secure tensor decomposition approach based on the fully 

homomorphic encryption scheme. Fig.3 provides an overview 

of the framework where the unstructured, semi-structured, and 

structured data a reencrypted and represented as a unified 

tensor model, which is then securely decomposed to a core 

tensor multiplied with a certain number of truncated orthogonal 

bases. The four representative step so the solution framework 

are summarized as follows. 

1. Data Representation, Encryption and Submission: 

 
The heterogeneous data collected in the clients are represented 

a slow-order sub-tensors using the method proposed in 

previous work then the sub- tensors are encrypted using the 

fully homomorphic encryption scheme and the generated 

cipher results are submitted to the cloud forunification and 

decomposition. In Fig.3, the unstructured video data VD, semi-

structured XML document XD, and structured database DB are 

transformed to cipher low – order sub-tensors 

T
E

VD,T
E

XD,T
E

DBrespectively 

 

2. Construction of Cipher Tensor: 

The generated sub-tensors T
E

VD,T
E

XD,T
E

DB are then 

embedded to a base tensor model Tbase ∈RItim×Ispa×Iclt 

to generate a unified cipher tensor model TE using the 

tensor extension operation T
E 

Tbase⇀×T
E
V 

D⇀×T
E
XD×T

E
DB the three orders Itim; Ispa; Iclt of the base 

tensor model denote the time, space and client characteristics. 

 

3. Secure Tensor Decomposition: 

After unfolding the unified cipher tensor T
E
to matrices 

T
E
(1),…., T

E
(N),where N is the number of orders of tensor T

E
, 

the symmetrization  transformation  is performed on each 

tensor unfolding to generate the symmetric matrix sym(T
E
(i)) = 

T
E
(i)(T

E
(i))T; 1 ≤ i ≤ N. The eigen vectors of the symmetric 

matrix sym(T
E
(i))are corresponding to the left singular vectors 

of matrix T
E
(i). The Lanczos  method is employed to perform 

the eigen value decomposition, namely, sym(T
E
(i)) = 

U
E
i^

E
U

E
i)T. The cipher core tensor S

E 
can be computed by 

applying Eq. (1) to the truncated bases U
E
1,…, U

E
N and the 

unified cipher tensor T
E
.
 

4. Obtain the Plain Core Tensor and Bases: 

By decrypting the cipher core tensor and cipher truncated bases 

generated in Step 3, the plain core tensor Sand plain truncated 

orthogonal bases U1,…., UNcan be computed. As the 

homomorphism are supported during the secure tensor 

decomposition, the generated results are correct and are 

identical to that directly computed using the plain data. This 

paper focuses on Step 2 and Step 3, which correspond to the 

secure representation function frand secure tensor 

decomposition function fd. 

 

IV. CONSTRUCTION ON CIPHER TENSOR VIA 

FULLY HOMOMORPHICENCRYPTION SCHEME 

ON CLOUD 

 

This section illustrates the process of representing the 

heterogeneous data as a unified cipher tensor model via the 

fully homomorphic encryption scheme. New concepts and 

operations closely related to the cipher tensor model are 

introduced. 

 

A. Cipher Tensor and Nil Element 

In order to clearly describe the process of representing the 

unstructured, semi structured, and structured data as a unified 

cipher tensor model. 

 

B. Constructing a Unified Cipher Tensor Model on Cloud 

In this paper, the heterogenous data are first represented and 

encrypted as cipher low-order sub-tensors on the clients, then 

they are submitted to the cloud for unification. To integrate all 

the cipher sub-tensors, a base tensor model is proposed, which 

is defined as Tbase∈RItim×Ispa×Iclt, where Itim; Ispa; 

Icltrefer to the time, space and client characteristics. The three 

orders serve as a basis to which various types of encrypted 
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subtensors can be appended to generate a unified cipher tensor 

model. 

 

 

C. Tensor Unfolding and Memory Storage Scheme 

When the unified cipher tensor is generated, the next critical 

step is to obtain the tensor unfolding, which are then 

transformed to symmetric matrices. For sparse tensor, the 

Compressed Row Storage (CRS)  method is employed to store 

the unfolded matrices. The CRS scheme is efficient for matrix-

vector product and can reduce memory usage during tensor 

decomposition. Additionally, in order to decrease execution 

time of the secure tensor decomposition algorithm, the data-

intensive application can employ T
E
(i)((T

E
(i))T v) toperform 

the matrix-vector operation on the symmetric matrix of the i-

mode tensor unfolding. 

D. Cipher Tensor Representation Algorithm on Cloud 

Based on the above mentioned methods, this paper proposes 

Algorithm 1 to represent the heterogeneous data as a unified 

cipher tensor (UCT) model on cloud. 

Algorithm 1 Cipher Tensor Representation.TE =fr (Du; 

Dsemi; Ds) 

Input: 

The unstructured data Du, semi-structured dataDsemi, and 

structured data Ds. 

Output: 

The unified cipher tensor model TE. 

1. Represent the local heterogeneous data as low-order 

sub-tensors, and encrypt them to cipher low-order 

sub-tensors on clients. 

2. Upload the generated cipher sub-tensors to cloud. 

3. Embed all the cipher sub-tensors to the base tensor 

model Tbase∈RItim×Ispa×Iclt, and obtain the unified cipher 

tensor model TE. 

4. Unfold the cipher tensor to matrices and generate the 

symmetric matrices for decomposition. 

In Line 1 of the proposed Algorithm 1, the unstructured, semi-

structured, and structured data are transformed to low-order 

sub-tensors, which are then encrypted using the fully 

homomorphic encryption scheme on clients. All the cipher 

sub-tensors are uploaded to cloud for unified representation. In 

this paper, the zero elements of the plain data are removed 

during the encryption procedure. The cloud embeds all the 

cipher sub-tensors to the base tensor model in Line 3 to obtain 

the unified cipher tensor model T
E
. Line 4 generates the 

symmetric matrices of each cipher tensor unfolding for secure 

tensor decomposition. 

CONCLUSION 

Aiming to propose an efficient approach that can securely 

process large scale heterogeneous data, this paper formalizes 

the secure tensor decomposition problem, and proposes a 

holistic solution framework to address it. A unified cipher 

tensor model is presented to integrate all the encrypted low-

order sub-tensors as a unified model. Concise examples are 

provided for illustrating the process of cipher tensor 

construction and unfolding. A Lanczos-based secure tensor 

decomposition algorithm is introduced, in which the non-

homomorphic square root operations in Lanczos procedure are 

removed. Theoretical analyses in terms of time complexity, 

memory usage, decomposition accuracy, and data security are 

provided. Some very preliminary experiments are carried out 

to evaluate the performance of the presented methods. The 

results support that the proposed approach is feasible and can 

pave a way for secure data processing on cloud. 
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