
International Journal of Trend in Research and Development, Volume 3(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar - Apr 2016

Available Online@www.ijtrd.com 310

High Availability and Load Balancing in

SDN Controllers

Ankit Rao, Shrikant Auti, Akhil Koul and Gauri Sabnis,

Department of Computer Engineering, Pune Institute of Computer Technology,

Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India

Abstract—SDN is an emerging computer networking paradigm

that supports programmable interfaces which provide an agile

and convenient way to customize the network traffic control.

The main contribution of the SDN architecture is the

disaggregation of the vertically integrated networking planes

viz. the control plane and the data plane in order to improve

network flexibility and manageability. The control plane

makes decision about where the traffic is sent. The control

plane function includes the system configuration,

management and exchange of routing table information. The

data plane also known as the forwarding plane forwards

traffic to the next hop along the path to the selected

destination network according to the control plne logic. In

SDN network based on OpenFlow a controller performs

logically centralized control of enterprise network

infrastructure, network policies, and data flows. At the same

time the controller is a single point of failure which can

cause a very serious problem (e.g. network outage) for

network reliability and production use cases. Also, the

controller failure may occur due to the improper distribution of

data traffic. The controllers, though are able to handle good

amounts of traffic but they crash if the traffic changes are

unexpected. To address this problem, we consider different

active/standby strategies to provide a controller failover in

case of controller failure. We propose a high-available

controller (HAC) architecture, which allows us to deploy a

high availability control plane for enterprise networks. Also,

we implement a load balancing strategy to distribute the

traffic among the servers.

Keywords—Router, Software Defined Networking, Open
Flow, Openvswitch, Control Plane, SDN Controllers, Load
Balancing, High Availability, Network Management.

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging

architecture that is dynamic, manageable, cost-effective, and

adaptable, making it ideal for the high-bandwidth, dynamic

nature of today's applications. This architecture decouples the

network control and forwarding functions enabling the

network control to become directly programmable and the

underlying infrastructure to be abstracted for applications and

network services. Here, the control plane is consolidated into

a centralized controller that uses the OpenFlow protocol, or

alternate communication methods, to control each node and

traffic flow on the network. SDN is directly programmable,

agile, centrally managed, programmatically configured, open

standards based and vendor neutral.

The implementation involves deployment of the control plane

of the switch onto one or more SDN controllers running on

dedicated servers thus giving the controllers a complete view

of the topology of the network. The controller then customizes

the network traffic control. In spite of the SDN advantages,

one of the serious problems of SDN is that the controller is a

critical point of failure and, therefore, the controller decreases

overall network availability .A controller failure can be

caused by various reasons: failure of the server where a

controller is running, the server operating system failure,

power outage, abnormal termination of the controller process,

network application failure, network attacks on the controller

and many others.

An approach for improving the SDN control plane

availability in case of a controller failure in the enterprise

software-defined networks is presented in the paper. We

implement cluster paradigm accounting multiple controllers in

the controller plane for solving the controller failure problem.

Multiple controllers are situated but for the switches in the

lower plane these multiple controllers are logically equivalent

to one controller. This is achieved by using a virtual IP

address and MAC address. In case of a primary controller

failure the election algorithm elects the new primary

controller providing high availability.Also, a load balancer for

equally distributing the traffic load on the servers providing

common service is combined with the high availability of the

architecture which aims at increasing the uptime of the system

to a greater extent.

II. LITERATURE SURVEY

 Figure 1. SDN Architecture

SDN Architecture: Traditionally, both the control and data

plane elements of a networking architecture were packaged in

proprietary, integrated code distributed by one or a

combination of proprietary vendors. The OpenFlow standard

created in 2008, was recognized as the first SDN architecture

that defined how the control and data plane elements would be

separated and communicate with each other using

the OpenFlow protocol. In the SDN architecture, the splitting

International Journal of Trend in Research and Development, Volume 3(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar - Apr 2016

Available Online@www.ijtrd.com 311

of the control and data forwarding functions is referred to as

“disaggregation,” because these pieces can be sourced

separately, rather than deployed as one integrated system.

This architecture gives the applications more information

about the state of the entire network from the controller, as

opposed to traditional networks where the network is

application-aware.

SDN architectures generally have three components or

groups of functionality:

1. SDN Applications: SDN Applications are programs that

communicate behaviors and needed resources with

the SDN Controller via application programming

interface (APIs). In addition, the applications can build

an abstracted view of the network by collecting

information from the controller for decision-making

purposes. These applications could include networking

management, analytics, or business applications used to

run large data centers. For example, an analytics

application might be built to recognize suspicious

network activity for security purposes.

2. SDN Controller: The SDN Controller is a logical entity

that receives instructions or requirements from the SDN

Application layer and relays them to the networking

components. The controller also extracts information

about the network from the hardware devices and

communicates back to the SDN Applications with an

abstract view of the network, including statistics and

events about what is happening.

3. SDN Networking Devices: The SDN networking devices

control the forwarding and data processing capabilities

for the network. This includes forwarding and processing

of the data path. The SDN architecture APIs are often

referred to as northbound and southbound interfaces,

defining the communication between the applications,

controllers, and networking systems.

Northbound API: It sits to the top of the controller. The

northbound API presents a network abstraction interface to

the applications and management systems at the top of the

SDN stack. The information from these applications is passed

along through a southbound interface.

Southbound API: southbound application program interfaces

(APIs) are used to communicate between the SDN

Controller and the switches and routers of the network. They

can be open or proprietary .Southbound APIs facilitate

efficient control over the network and enable the SDN

Controller to dynamically make changes according to real-

time demands and needs. OpenFlow, which was developed by

the Open Networking Foundation (ONF), is the first and

probably most well-known southbound interface. It is an

industry standard that defines the way the SDN Controller

should interact with the forwarding plane to make adjustments

to the network, so it can better adapt to changing business

requirements. With OpenFlow, entries can be added and

removed to the internal flow-table of switches and potentially

routers to make the network more responsive to real-time

traffic demands.

III. GENERAL ARCHITECTURE

Current researches on software defined networking (SDN) still

face many challenges such as the performance of control

plane, high availability of controller, scalability, consistency

issues of network states, especially high availability of

network controller. OpenFlow protocol supports different

kinds of controller roles. Switch can connect to both a master

controller and multiple slave controllers. If the primary

controller fails, a new primary controller would be elected

from the cluster of controllers. High-available controller

(HAC) architecture is based on adding of additional cluster

middleware between the controller core and controller network

services and applications. To provide fault-tolerance of the

control platform, the HAC cluster middleware includes the

following managers and services:

Managers:

1. Controller Manager to coordinate start/restart/stop

controller network services and applications and up and

down control interface for network devices connections.

2. Cluster Manager to control the operation of the

controllers cluster and distribute responsibilities

(primary or standby) in accordance with the cluster

configuration file.

3. Sync Manager to control controller network services and

applications synchronization between controller

instances in the cluster.

4. Recovery Manager to coordinate the recovery process

(failover and fail- back) in case of controller instance

failure in the platform.

Services:

1. Message Service to provide control message distribution

to other controller instances in the controller cluster.

2. Event Service to provide filtering, distribution and

processing to or from other controller instances.

3. Heartbeat Service to monitor the operational status of

the controllers and detects controller failures in the

controller cluster.

 Figure 2: High availability architecture

IV. PROPOSED METHOD

A. High Availability

In order to eliminate single point of failure in Software

Defined Networks and ensure reliability we propose an

approach using the cluster paradigm since the cluster

paradigm has number of advantages over the master slave

paradigm.

International Journal of Trend in Research and Development, Volume 3(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar - Apr 2016

Available Online@www.ijtrd.com 312

1. No overhead of manual configuration for all controllers on

each device.

2. Increased High availability as there are multiple controllers

available if primary fails.

3. Only single IP address is enough to deploy multiple

controllers in cluster.

The approach involves setup of a cluster of controllers above

the switches in a network. The entire cluster of controllers is

represented by a single virtual IP that would be the IP of the

primary controller. The primary controller will be elected

based on the priorities assigned to the individual controllers.

The primary controller will be responsible for network data

flows and the other controllers will keep in synchronization

with the primary controller. As the primary controller failure

occurs the election algorithm is executed to determine the

next primary controller.

1. Initial Mode: The system starts with the data flow through

the network. The primary controller (according to priority)

takes control of the network. Other controllers in the cluster

establish a connection to the primary controller via the

proposed Northbound API .Other controllers request the

current Network view and network interfaces list for control

channels connections, current states of network services and

applications to the primary controller.

2. Operational Mode: In this mode primary controller

processes OpenFlow messages from network devices and

controls network data flows, the standby controllers monitor

the primary controller state and synchronize with it. The

controller state includes the network topology view, network

services and applications and controller data synchronisation.

3. Failure Mode: This mode consists of two stages:

1. Failure detection- Heartbeat messages are used to

detect failure of the primary controller.

2. Recovery- This is initialised after failure is detected.

This includes

a. Election of new primary controller using the

election algorithm.

b. The new primary controller informs about this

change to the other controllers and the virtual IP

change.

c. Controller network services and application

restoration.

d. Control network interfaces up.

The election algorithm is executed simultaneously on all the

controller nodes of the cluster after failure detection. The

output of the algorithm is that the controller with the highest

priority is elected as the new primary controller. The

algorithm designed is as follows:

 Algorithm Select_Controller(n)

 //Problem Description: This algorithm selects the

appropriate controller based on priority.

 //Input: Number of controllers

 //Output: Appropriate selected controller

 if (this.role == NULL) then

 while (this.role == NULL) do

 multicast this.priority

 check CIBroadcaster.priority;

 if (!CIBroadcaster || this.priority>CIBroadcaster.priority)

then

 this.role ← CIBroadcaster

 this.IP ← virtual IP

 else

 this.role ← backup

 else if (this.role == CIBroadcaster) then

 while (this.role == CIBroadcaster) do

 multicast heartbeat packets

 Listen to new.priority

 if (received new.priority) then

 send this.priority

 if (this.priority < new.priority) then

 this.role ← backup

 else if (this.role == backup) then

 listen to heartbeat packets

 if (no heartbeat packets) then

 this.role ← NULL

Where,

this.role = the role assigned to the controller

this.priority = the priority of the controller

this.ip= IP address of the controller

CIbroadcaster = primary controller

CIBroadcaster.priority = priority broadcasted i.e. the priority

of the failed controller

new.priority = priority of newly elected primary controller.

This election algorithm deals with the controller failure and

thus high availability will be achieved.

 B. Load Balancer

The load balancer architecture will be implemented along

with the SDN-HA. The main objectives of the load balancer

will be as follows:

1) Distribute the incoming data from the network devices into

batches. IP batching will be used.

2) The setup consists of multiple servers which provide the

same service. Then there are hosts all of which request for

the same service and also there is a switch and the controllers

with HA architecture.

3) The controller here is programmed such that it enforces the

switch to direct packets to the multiple servers in a round

robin fashion so that the load is equally distributed among the

servers and no server goes down due to excessive-load.

 Figure 3: Load Balancer Architecture

Figure 3 illustrates the functioning of the load balancer

wherein the requests from the hosts h1, h2, h3, h4 are equally

distributed to the servers by the controller.

The working of the load balancer is as follows:

Preemptively ask for the MAC addresses of all the servers

with crafted ARP requests, in order to associate these MAC

addresses and the corresponding switch ports with the real IP

International Journal of Trend in Research and Development, Volume 3(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar - Apr 2016

Available Online@www.ijtrd.com 313

addresses of the servers. This query is performed upon

connection establishment with the switch in order to avoid

hanging client flows waiting to be forwarded to the correct

server. The ARP replies by the servers will be handled as part

of the packet-In handler. Answer to ARP requests from the

clients searching the MAC of the service IP, with proxied

ARP replies that answer with a fake MAC that is associated

with the load balancer (we use ”0A:00:00:00:00:01” for

simplicity).

It is useful to store the information contained in the ARP

request (source MAC address of client, input port of ARP

request packet). In this way, when the load balancer needs

later to direct flows towards the clients, it will know their

MACs and ports to output the packets.

Answer to ARP requests from the servers searching the MAC

of a client IP, with proxied ARP replies that answer with the

fake MAC that is associated with the load balancer. At this

point we already know the MAC of the client, since it has

previously requested the MAC address of the load balancer

direct flows from the clients towards the servers using the

following load balancing mechanism: for each new IP flow

from a client, select a server at random and direct the flow to

this server. Of course, the server should see packets with their

MAC address changed to the MAC of the load balancer, but

with the source client IP intact. The destination IP address is

rewritten to the one of the server. Be careful: the redirection

should only happen for flows that stem from client IPs (i.e.,

non-server IPs) and which are directed to the service IP.

Direct flows

from the servers to the clients, after rewriting the source IP

address to the one of the service IP and the source MAC

address to the load balancer fake MAC. In this way, the

clients do not see any redirection happening, and they believe

that all their communication takes place between their

MAChines and the service IP.

C. Overall System

The proposed system consists of a high availability

architecture consisting of a cluster of controllers with a single

virtual IP which will also be responsible for equal distribution

of the traffic load to the appropriate servers so that the

network uptime increases substantially.

The main reasons for this are increase in the uptime of the

servers along with the highly available controllers. Figure4

illustrates the proposed architecture with High

Availability(HA) and Load Balancer(LB) features.

Figure 4: HA and LB architecture

D. Basic Flow

The main aim of the system is to rectify the flaws in the

current SDN controllers and networks controlled by them.

With that perspective, the high availability architecture with

the combination of controller as a load balancer has been

designed which substantially tends to improve the uptime of

the system.

The data of the system is generated in the form of

request/response of services required by the hosts and

provided by the servers. The request first goes to the network

devices present in the network. Here, we consider the switch

as the network device which checks the path for the demanded

request in its routing table first. If present, it routes the request

appropriately otherwise it queries the controller for the path.

The controller provides the path to the switch as it has the

overall topology view. In case of the failure of the master

controller, the election algorithm is used to elect the new

controller and the process continues in the normal fashion

again. Also, while returning the response to the requests

generated care is taken that the load is equally distributed

among the servers providing the same service so that the

server does not go down due to excessive load. Thus a highly

available network which tends to be reliable is the guaranteed

output of the designed method.

The overall system working can be illustrated by the

following data flow diagram (level 1)Figure 5.

Figure 5: Data flow diagram(level 1)

The following functionalities are expected from the system:

1) Configuration of a few controllers in SDN networks

rather than configuring a large number of switches in the

traditional networks which is a cumbersome task.

2) Very less down time due to the high availability

architecture. Also, the down time caused is due to the

time for the election of the new master controller.

International Journal of Trend in Research and Development, Volume 3(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar - Apr 2016

Available Online@www.ijtrd.com 314

3) Load distribution among servers providing similar

services so that the servers do not crash due to excess

load of packets.

CONCLUSION AND FUTURE SCOPE

The Software-Defined Network (SDN) has recently emerged

to address the problem of the ossified Internet protocol

architecture and to enable agile and flexible network

evolvement. SDN, however, heavily relies on control

messages between a controller and the forwarding devices for

the network operation. Thus, it becomes even more critical to

guarantee network high availability (HA) between a controller

and its forwarding devices in the SDN architecture since the

controller being the single point of failure.

With extensive experiments using real systems, we have

identified that the significant issues of HA in operations of a

SDN such as single point of failure of multiple logical

connections, multiple redundant configuration, unrecoverable

interconnection failure, interface flapping, new flow attack,

and event storm. We will be designing and implementing the

management frameworks that deal with SDN high availability

and scalability issues by using the proposed approach thus

eliminating the single point of failure in SDN architecture. Also the

load balancer in addition to the high availability architecture helps

in decreasing the down time of the network.

Future research would aim at developing better algorithms and

strategies to achieve the current developments. The method

designed now has some drawbacks resulting due to the redundancy

of data packets. Load balancer with respect to CPU utilization is

being worked on. Also, developing a load balancer for the

controllers would be a great addition to the current development.

Acknowledgment

 We would like to thank our guides Prof.P.A.Jain of Pune

Institute of Computer Technology and Mr.Vijay Jadhav from the

industry working in GS Labs, Pune for their immense support and

guidance. Their suggestions and their experience in this field

helped us a lot.

References

[1] ONF, Software-Defined Networking: The New Norm

for Networks, white paper,

https://www.opennetworking.org

[2] Feng Wang, Heyu Wang, 2014, A Research on Carrier-

grade SDN Controllers.

[3] V Pashkov, A Shalimov, R Smeliansky, Lomonosov

Moscow State University, Controller failover for SDN

enterprise networks.

[4] Yi-Chen Chan, Kuochen Wang , Yi-Huai Hsu, Fast

Controller Failover for Multi-domain Software-Defined

Networks.

[5] Junjie Zhang, Kang Xi, Min Luo, H. Jonathan Chao ,

2014, Load Balancing for Multiple Traffic Matrices

Using SDN Hybrid Routing.

[6] Jun Li, Xiangqing Chang,Yongmao Ren, Zexin Zhang,

Guodong Wang, 2014, An Effective Path Load

Balancing Mechanism Based on SDN.

[7] Hyungbae Park, University of Missouri–Kansas City,

2015,High Availabilty and scalability schemes for

Software-defined networks.

[8] High Availability for Non-stop Network Controller,

Deguo Li, Li Ruan,Yinben Xia, Mingming Zhu, 2014.

[9] A Preliminary Research and Implementation of a

Hierarchical High Availability Network Disaster-

Tolerant System, Xiuqing Mao, Xingyuan Chen,

Yingjie Yang,2011.

