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Abstract: Vehicle Routing Problem (VRP) is  a  key  element  

of  many  transportation  systems  which involve  routing  of 

fleet of  vehicles from a depot to  a set of customers node. It is 

required that these vehicles return to the depot after serving 

customers’ demand. This paper investigates a relaxed version 

of VRP, in which the number of visits to the customer is not 

restricted to be at most one. The relaxed version is called split 

delivery VRP. The problem incorporates  time windows, fleet 

and driver scheduling in the planning horizon. The goal is to 

schedule the deliveries according to feasible combinations of 

delivery days and to determine the scheduling of fleet and 

driver and routing policies of the vehicles. The objective is to 

minimize the total costs of all routes over the planning 

horizon. We model the problem as a linear mixed integer 

program. We develop a combination of heuristics and exact 

method for solving the model. 
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I.  INTRODUCTION 

In logistic system it is necessarily to design the optimal 

routes for a set of vehicle involved with given capacity in such 

a way that could satisfy customers’ demand. Vehicle Routing 

Problem (VRP) is one of the important tool that can be used 

for designing the optimal routes. This  well known  

combinatorial optimization  problem consists of a customer 

node with deterministic demands, and a central depot which 

acts as the base of a  fleet of vehicles. The customer’s demand 

must be delivered by exactly one vehicle The objective is to 

design a set of Hamiltonian cycles (vehicle routes) starting 

and terminating at the central depot, such that the demand of 

customers is totally satisfied,  the total demand of the 

customers assigned to a route does not exceed vehicle 

capacity, such that minimizing the overall travel cost,  taking  

into  account  various  operational constraints. VRP  was first 

introduced  by  [5]. A comprehensive overview of the Vehicle 

Routing Problem can be found in [4]  which discusses 

problem formulations, solution techniques, important variants 

and applications. There are many other researchers have been 

working in this area to discover new methodologies.  A 

comprehensive interesting survey of the Vehicle Routing 

Problem can be found in [4], [3], [36], [37], and  [7]. [6] 

addressed a thorough review of past and recent developments 

of VRP. 

In some cases, particularly,  when a customer’s demand 

exceeds the vehicle capacity it is necessary to visit that 

customer more than once, it requires only a little more thought 

to see that even when all customer demands are less than or 

equal to the vehicle capacity, it may be beneficial to use more 

than one vehicle to serve a customer. For this situation it is 

necessarily to have split delivery In terms of VRP this type of 

problem is called the split delivery vehicle routing problem 

(SDVRP), where the single-visit assumption is relaxed and 

each customer may be served by more than one vehicle. In 

this paper it is assumed that the capacity of each vehicle used  

is homogeny. A survey paper regarding to SDVRP is 

presented by [10]. 

Firstly, the SDVRP as the variant of VRP was introduced 

by [8]. They also gave some properties and a local heuristic 

search for solving the problem. Due to the structure of the 

problem, there are two kind of solution approaches have been 

proposed ,i.e., exact and heuristic methods.   

The first exact method for solving SDVRP was addressed 

by  [9]. They  introduced a mathematical formulation based on 

integer programming and solved through a cutting plane 

approach.[34] and [28] proposed the problem with time 

windows and present exact approaches based on column 

generation and branch-and-bound techniques. A column 

generation approach was presented by [15]. Columns include 

route and delivery amount information. They solved the 

pricing sub-problems by a limited-search-with-bound 

algorithm. Feasible solutions are obtained iteratively by fixing 

one route once. [21] used branch and price method for the 

SDVRP formulated as a mixed integer program based on arc-

flow consideration.  A branch-price-and-cut algorithm was 

proposed by [24] for solving commodity constrained of 

SDVRP. They formulated the problem through a set 

partitioning pattern. [23] present two exact branch-and-cut 

solution methodologies. 

[32] develop a column generation technique to address the 

problem of scheduling helicopter flights to exchange crews on 

off-shore platforms. They model the problem as an SDVRP 

and propose an integer linear programming formulation in 

which all feasible flight schedules are enumerated in advance, 

and solve its linear relaxation by means of column generation.  

[13] proposed a dynamic program with finite state and action 

spaces, and tackle it by solving the shortest path problem on a 

digraph whose nodes and arcs correspond to states and 

transitions between states, respectively. [14] considered the 

undirected version of the problem and presented new lower 

bounds together with some polyhedral results for the SDVRP. 

An integer programming model was introduced and a 

relaxation of the SDVRP. They showed  that all constraints in 

this relaxation are facet-defining for the convex hull of the 

incidence vectors of the SDVRP solutions.  

[8] developed a heuristic method for SDVRP,  which 

involved  a two-stage local search algorithm. Their method 

was based on the VRP route improvement procedure of [29] 

The first stage is to find the solution of VRP problem, and 

then  an SDVRP solution is constructed and improved in the 

second stage. Other heuristic approaches were developed 

using hybrid methods and metaheuristics. [11] and [20] 

proposed a tabu search algorithm, a memetic algorithm with 

population management by [26], three hybrid algorithms due 

to [16], [12], and [30], a metaheuristic based on the scatter 

search methodology by [31], an adaptive memory search-
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based metaheuristic by [18], a population-based tabu search 

with vocabulary building approach by [17], a construction 

heuristic due to [33], a randomized granular tabu search 

technique by [25]. [22] used the combination of local search 

and ant colony optimization. A variable neighborhood descent 

metaheuristic was due to [35]. For a more detailed discussion 

on heuristics can be found in [19].  

This paper concerns with a comprehensive model for the 

SDVRP incorporated with time windows, fleet and driver 

scheduling (SDVRPFDTWP) . The basic framework of the 

vehicle routing part can be viewed as a Heterogeneous split 

delivery Vehicle Routing Problem with Time Windows 

(HSDVRPTW) in which a limited number of heterogeneous 

vehicles, characterized by different capacities are available 

and the customers have a specified time windows for services. 

We propose a mixed integer programming formulation to 

model the problem. A feasible neighborhood heuristic search 

based on active set constraint is addressed to get the integer 

feasible solution after solving the continuous model of the 

problem. 

II. MATHEMATICAL FORMULATION 

Using graph, SDVRP can be defined as follows.  Let G = 

(V, E) be a complete graph, where V = {v0, v1, …, vn} is the 

vertex set and E = {(vi, vj): vi, vj∈V, i ≠ j, j ≠ 0} is the set of 

traversing route. Vertex v0 represents the central depot 

where a fleet of vehicles is located. The vehicles are 

assumed to be identical with maximum carrying load equal 

to Q. The remaining n vertices of V \ {v0} represent the 

customer set.  Each customer vertex is associated a non-

negative known demand qi,  whereas with each arc (vi, vj) ∈ E 

is associated a cost cij which corresponds to the cost (travel 

time, distance) for traversing from vi to vj. Also, it is 

assumed that the triangle inequality holds. The delivery 

services for each vehicle must start and end its 

traversing route at the depot, v0. 

The demand of a customer must be satisfied and may 

be fulfilled by more than one vehicle. In order to meet a 

customer’s demand split delivery is needed. One of the 

reason this condition occur is that customer’s demand 

exceeds vehicle capacity. Mathematically, it can be 

written as 
iQ q  . 

The objective of the  problem is to design the set of 

Hamiltonian paths to serve all customers  such  that: the number 

of vehicles used is minimized, as well as to minimize the total 

distance or cost of the generated paths. There are some 

restrictions which must be satisfied, such as, every path 

originates from the central depot v0,  each customer vertex is 

assigned to a single path, and  the total demand of the customer 

set assigned to a single path does not exceed the maximum 

carrying load Q of the vehicles (capacity constraint).  

To formulate the model, firstly we denote T as the 

planning horizon  and D as the set of drivers. The set of 

workdays for driver l D  is denoted by lT T . The start 

working time and latest ending time for driver l D  on day 

t T  are given by 
t

lg  and 
t

lh , respectively. For each driver 

l D , let H denote the maximum weekly working duration. 

We denote the maximum elapsed driving time without break 

by F and the duration of a break by G . 

Let K denote the set of vehicles. For each vehicle k K , 

let Qk and Pk denote the capacity in weight and in volume, 

respectively. We assume the number of vehicles equals to the 

number of drivers. Denote the set of n customers (/nodes) by 

 1,2, ,N n  . Denote the depot by  0, 1n . Each 

vehicle starts from  0  and terminates at  1n . Each 

customer i N  specifies a set of days to be visited, denoted 

by iT T  . On each day it T , customer i N  requests 

service with demand of 
t

iq  in weight and 
t

ip  in volume, 

service duration 
t

id  and time window  ,i ia b . Note that, for 

the depot  0, 1i n   on day t, we set 0t t t

i i iq p d   . 

The travel time between customer i and j is given by ijc . 

Denote the cost coefficients of the travel time of the drivers by 

A. 

We define binary variable 
t

ijkx  to be 1 if vehicle k travels 

from node i to j on day t, Variable 
t

ikv  is the time that vehicle 

k visits node i on day t. Binary variable 
t

ikz  indicates whether 

vehicle k takes a break after serving customer i on day t. 

Variable 
t

iku  is the elapsed driving time for vehicle k at 

customer i after the previous break on day t. Binary variable 
t

lky  is set to 1 if vehicle k is assigned to driver l on day t. 

Variables 
t

lr and 
t

ls  are the total working duration and the 

total travel time for driver l on day t, respectively. 

 

This notations used are given as follows : 

Set: 

T  The set of workdays in the planning horizon, 

D  The set of drivers, 

Tl  The set of workdays for driver l ∈ D, 

K  The set of vehicles, 

N  The set of customers, 

N0  The set of customers and depot N0 = {0, n + 1} 

∪ N, 

Ti  The set of days on which customer i N  

orders, 

 

Parameter: 

Qk  The weight capacity of vehicle k K , 

Pk  The volume capacity of vehicle k K , 

cij  The travel time from node 0i N  to node 

0j N , 

[ai, bi]  The earliest and the latest visit time at node 

0i N , 

t

id   The service time of node 0i N  on day 

it T , 

t

iq  The weight demand of node 0i N  on day 

it T , 

t

ip  The volume demand of node 0i N  on day 

it T , 

 [
t

lg , 
t

lh ]  The start time and the latest ending time of 

driver l D  on day t T , 
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t

i                Delivery quantity for customer i on day it T , 

H  The maximum working duration for each driver 

over the planning horizon, 

F  The maximum elapsed driving time without 

break, 

G  The duration of the break for drivers, 

A1, A2, A3    Costs
 

 

 

Variables: 

Binary 
t

ilkx  Equal to 1 if vehicle k K  travels from node 

0i N to 0j N  with driver l D   on day 

t T , 
t

kw               Equal to 1 if vehicle k K  delivers order,   

t

ikz   Equal to 1 if vehicle k K  takes break after 

serving node 0i N  on day t T , 

t

lky   Equal to 1 if  vehicle k K  is assigned to 

driver l D  on day t T  

 

Continuous 
t

ikv   The time at which vehicle k K  starts service 

at node 0i N  on day t T , 

 
t

iku   The elapsed driving time of vehicle k K  at 

node 0i N  after the previous break on day 

t T , 
t

lr   The total working duration of driver l D  on 

day t T . 

 

III. THE MODEL 

 
The mathematical formulation for this problem can be 

formulated as a mixed integer programming model. 

 

                                                                              (1)

           

Subject to : 

1t

ojk

j N

x


          k  K, t  T                     (2) 

0

1t

ijk

k K j N

x
 

             i  N, t  Ti                       (3) 

0t t

ijk jik

k K k K

x x
 

     i, j  N0, t  T                    (4) 

t t

ijk k

k K k K

x w
 

           i, j  N0, t  T                   (5) 

1t

k

k K

w


                    t  T                                 (6) 

0

t t

i ijk k

i N j N

q x Q
 

        k  K, t  T                     (7) 

0

t t

i ijk k

i N j N

p x P
 

        k  K, t  T                     (8) 

(1 )t t t t

jk ik ij ijk iku u c M x Mz      

                                  i, j  N0,  k  K, t  T      (9) 

(1 )t t

jk ij ijku c M x    i, j  N, k  K, t  T      (10) 

0

t t t

ik ij ijk ik

j N

u c x F Mz


    i  N0,  k  K, t  T(11) 

(1 )t t t t t

jk ik i ij ik ijkv v d c G z M x        

                                 i, j  N0,  k  K, t  T     (12) 
t

i ik ib v a                 i  N,  k  K, t  Ti         (13) 

0 ( )t t t

k l lk

l D

v g y


        k  K, t  T                     (14) 

1, ( )t t t

n k l ik

l D

v h y



      k  K, t  T                     (15) 

1, (1 )t t t t

l n k l lkr v g M y      

                                    l  D, k  K, t  Ti       (16) 

l

t

l

t T

r H


                    l  D                             (17) 

, , , {0,1}t t t t

ilk i ik lkx w z y      

                     i, j  N0, l  D,  k  K, t  T       (18) 

, , 0t t t

ik ik lv u r    i, j  N0, l  D,  k  K, t  T    (19) 

The objective function (1) minimizes the total cost 

incurred over the planning horizon. 

Constraints (2) to ensure that each customer must be 

visited by one vehicle on each of its delivery days. Constraints 

(3) impose that each customer node is visited at least once. 

Flow conservation of vehicles is presented in Constraints (4). 

The variables x and w need to be linked as shown in 

Constraints (5). While  Constraints (6) is to make sure that 

every vehicle delivers at least one order per customer. 

Constraints (7-8) guarantee that the vehicle capacities are 

respected in bothe weight and volume.   

Constraints (9-10) define the elapsed driving time as a 

function of binary variable 
t

ikz   Meaning that, for the vehicle 

k travelling from customer node i to j on day t, the elapsed 

driving time at j equals the elapsed driving time at i plus the 

driving time from i to j (i.e., 
t

jku  ≥ 
t

iku  + cij ) if the vehicle 

does not take a break at customer i (i.e., 
t

ikz = 0). Otherwise, if 

the vehicle takes a break at customer i (i.e., 
t

ikz  = 1), the 

elapsed driving time at j will be constrained by (10) which 

make sure it is greater than or equal to the travel time between 

i and j (i.e., 
t

jku  ≥ cij). Constraints (11) guarantee that the 

elapsed driving time never exceeds an upper limit F by 

imposing a break at customer i (i.e., 
t

ikz = 1) if driving from 

customer i to its successor results in a elapsed driving time  

Constraints (12) determine the time to start the service at 

each customer. If node j is visited immediately after node i, 

the time 
t

jkv to start the service at j should be greater than or 
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equal to the service starting time 
t

ikv  at i plus its service 

duration 
t

id , the extra service time 
t

ie p  if i is visited by an 

inappropriate vehicle (i.e., 
t

jw  = 1), the travel time between 

the two customers ijc  , and the break time G if the driver 

takes a break after serving I (i.e., 
t

ikz  = 1). Constraints (13) 

make sure the services start within the customers’ time 

window. 

Constraints (14-15) ensure that the starting time and 

ending time of each route must lie between the start working 

time and latest ending time of the assigned driver. Constraints 

(16) define the working duration for each driver on every 

workday, which equals the time the driver returns to the depot 

minus the time he/she starts work. Constraints (17) make sure 

that the drivers work for no more than a maximum weekly 

working duration. Constraints (18-19) define the binary and 

nonnegative variables used in this formulation.  

IV. NEIGHBORHOOD SEARCH 

An optimal solution of a linear programming problem can 

be detected using the reduced gradient vector. However,  

generally, in integer programming the reduced gradient 

vector,  is not available, even though the problems are convex. 

Thus we need to impose a certain condition for the local 

testing search procedure in order to assure that we have 

obtained the “best” suboptimal integer feasible solution. 

 [1] has proposed a quantity test to replace the pricing test 

for optimality in the integer programming problem. The test is 

conducted by a search through the neighbors of a proposed 

feasible point to see whether a nearby point is also feasible 

and yields an improvement to the objective function. 

Let []k be an integer point belongs to a finite set of 

neighborhood N([]k) We define a neighborhood system 

associated with []k, that is, if such an integer point satisfies 

the following two requirements 

1. if []j  N([]k) then []k  []j, j   k.  

2. N([]k)  = []k  + N(0)  

 With respect to the neighborhood system mentioned 

above, the proposed integerizing strategy can be described as 

follows. 

 Given a non-integer component, xk, of an optimal vector, 

xB. The adjacent points of xk, being considered are [xk] dan [xk] 

+ 1. If one of these points satisfies the constraints and yields a 

minimum deterioration of the optimal objective value we 

move to another component, if not we have integer-feasible 

solution. 

Let [xk] be the integer feasible point which satisfies the 

above conditions. We could then say if [xk] + 1 N([xk]) 

implies that the point [xk] + 1 is either infeasible or yields an 

inferior value to the objective function obtained with respect 

to [xk]. In this case [xk] is said to be an “optimal” integer 

feasible solution to the integer programming problem. 

Obviously, in our  case, a neighborhood search is conducted 

through proposed feasible points such that the integer feasible 

solution would be at the least distance from the optimal 

continuous solution. 

V. THE ALGORITHM 

This is a combination of exact and heuristic method. The 

exact method is used for solving the relaxed problem of the 

model. The heuristic method, called neighborhood search, can 

described as follows. 

Stage 1. 

Step 1. Get row i* the smallest integer infeasibility, such that  

*
min{ ,1 }

i i i
f f     

              (This choice is motivated by the desire for minimal 

deterioration in the objective function, and clearly 

corresponds to the integer basic with smallest integer 

infeasibility). 

Step 2. Do a pricing operation  

 
1

* *

T T

i i
v e B


  

              This Step is to find the direction vector. 

Step 3. Calculate 
*

T

ij i j
v   

 With  corresponds to 

min
j

ij

jd



  
 
  

 

Calculate the maximum movement of nonbasic j at 

lower bound and upper bound. 

 Otherwise go to next non-integer nonbasic or 

superbasic j (if available). Eventually the column j* 

is to be increased form LB or decreased from UB. If 

none go to next i*. 

Step 4. 

  Solve  Bj* = j*  for  j* 

Step 5. Do ratio test for the basic variables in order to stay 

feasible due to the releasing of nonbasic j* from its 

bounds. 

Step 6. Exchange basis  

Step 7.   If row i* = {} go to Stage 2, otherwise 

 Repeat from step 1. 

 

Stage 2. Pass1 : adjust integer infeasible superbasics (if any) 

by fractional steps to reach complete integer 

feasibility. 

             Pass2 : adjust integer feasible superbasics. The 

objective of this phase is to conduct a highly 

localized neighborhood search to verify local 

optimality. 

CONCLUSIONS 

This paper was intended to develop efficient technique for 

solving one of the most economic importance problems in 

optimizing logistic systems. The aim of this paper was to 

develop a model of split delivery vehicle routing with Time 

Windows, Fleet and Driver Scheduling Problem This problem 

has additional constraint which is the limitation in the weight 

and volume of vehicles. The proposed algorithm employs 

nearest neighbor heuristic algorithm for solving the model.  
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