
International Journal of Trend in Research and Development, Volume 9(5), ISSN: 2394-9333 

www.ijtrd.com 

IJTRD | Sept – Oct 2022 
Available Online@www.ijtrd.com   44 

Artificial Neural Network based Solar Radiation 

Prediction – A Review 

1
Pankaj Kumar, 

2
Mamta Sood, 

3
Dr. Manju Gupta and 

4
Neeti Dugaya, 

1
Student, 

2,4
Assistant Professor, 

3
Associate Professor, 

1,2,3,4
Oriental Institute of Science & Technology, Bhopal, Madhya Pradesh, India 

 

Abstract—Accurate prediction of global solar radiation (GSR) 

is very important for all solar energy applications such as 

design of solar energy system, management of solar power 

plants and so on. But GSR data is not easily available in all the 

locations of India due to cost and other technical issues in 

measurement techniques. Hence it is essential to predict the 

solar radiation by employing solar radiation prediction models 

with available meteorological parameters as inputs. The input 

parameters include sunshine duration, temperature, wind 

speed, atmospheric pressure, and relative humidity and so on. 

This work is focused on the review of Artificial Neural 

Network (ANN) based solar radiation prediction. 
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I. INTRODUCTION 

Solar energy is one of the most important renewable energy 

sources in India due to primary geographical location. India 

has a huge solar energy potential for generating green 

electricity. The accurate information about solar radiation is 

very essential for the optimal design of solar energy based 

system. Due to cost and other technical issues in measurement, 

the radiation data is not readily available in all the locations of 

India. Basically, installing the high precision measuring 

equipment is the best method to obtain the solar radiation data. 

Indeed despite the continuous efforts to establish more solar 

radiation measurement stations in recent years, the number of 

meteorological stations measuring the solar radiation data is 

still restricted. Hence it is economical to develop proper solar 

radiation prediction models. There have been several papers 

that presented different solar radiation models using various 

meteorological data namely regression models, ANN models 

and other hybrid models to predict GSR for the solar energy 

based applications [1-8]. For all solar energy applications GSR 

is considered as the most important parameter. The main 

objective of this study is to reviewdifferent ANN based models 

for the prediction of solar radiation. 

The paper has been organized as follows; Section 2 covers the 

neural network architecture and activation functions. Section 3 

presents the performance metrics of solar radiation models. 

Section 4 contains the results and discussion. Section 5 covers 

the conclusion of this study. 

II. METHODOLOGY 

A. Artificial Neural Network 

An artificial neural network provides a computationally 

proficient way of determining nonlinear relationship between a 

number of input variables and one or more outputs. This ANN 

technique has been applied for modeling, identification, 

optimization, prediction, forecasting and control of complex 

systems [10-16]. 

B. Neural Networks and its architecture 

A Neural Network can be defined as an interconnection of 

neurons, such that neuron outputs are connected, through 

weights, to all other neurons including themselves. Fig.1 shows 

the neuron model and Fig.2 shows the simple model of an 

artificial neuron. X1, X2,.Xn represents the inputs to the 

artificial neuron and w1 w2…wn are the weights attached to 

the input links. Through dentrites, biological neuron receives 

all the inputs, sums them and produces output if the sum is 

greater than a threshold value. Different types of artificial 

intelligence models which include, 

 Multilayer Perceptron Neural Network(MLP), 

 Recurrent Neural network(RNN), 

 Radial Basis network(RBN) 

The above mentioned models have its own specific structure, 

training method and area of application. Tree-based model is 

the one method of nonlinear regression analysis which is called 

“regression tree” on the regression problem and “classification 

tree” or “decision tree” in classification problem. 

 

Fig.1 Neuron Model 

 

Fig.2 Simple Model of an Artificial Neuron 

Al the above mentioned models have its own precise structure, 

training method and area of application. Tree-based model is 

the one method of nonlinear regression analysis which is called 

“regression tree” on the regression problem and “classification 

tree” or “decision tree” in classification problem. Fig.3 shows 

Feed forward network adopted back propagation method [9] 

and Fig.4 shows an example of tree based model, where S is 
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dividing condition, t is the number of node and Y is mean 

value of output. 

C. Activation Functions 

The activation function helps in achieving the exact output, on 

applying the net input over the network. A function is 

associated with the input’s processing. This function serves to 

combine activation, information or evidence from an external 

source. A nonlinear activation function is used to make sure 

that a neuron’s response is bounded. There are several 

activation functions as: 

 Identity Function 

 Binary Step Function 

 Sigmoidal Function 

 Ramp Function 

III. PERFORMANCE METRICS 

The performance of the model is evaluated using the statistical 

parameters namely Root mean square (RMSE) and correlation 

coefficient (R). For better modeling R value should be closer to 

1 and RMSE value should be zero. 

Root mean square: Root mean square is given by 

𝑅𝑀𝑆𝐸 =   
1

𝑛
 (𝐻𝑖𝑚  −  𝐻𝑖𝑐 )

2𝑛
𝑖=1                  (1) 

where n is total number of observations, Hi,c is ith calculated 

value and Hi,m is the ith measured value of solar radiation. 

Mean bias error: The mean bias error is defined as 

𝑀𝐵𝐸 =  [ (𝐻𝑖 ,𝑚 − 𝐻𝑖 ,𝑐)]/𝑁           (2) 

 

Fig.3 Feed forward Back propagation netwok 

 

Fig.4 Example of tree-based model

 

TABLE 2: A summary of input variables used in ANN based prediction of solar radiation 
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IV. REVIEW OF SOLAR RADIATION PREDICTION 

USING ANNS 

A. Inclusion criteria 

In order to make certain a high pleasant of the publications 

protected in our assessment, an automated seek changed into 

completed at the databases of the most prestigious publishers 

with extra criteria. This was followed with the aid of including 

works stated in formerly selected guides so that it will have a 

listing that is as exhaustive as possible. During our search 

process, conference articles, running papers, commentaries, 

and eBook evaluation articles were excluded [15]. 

B. Distribution of literature researches 

In the following section, we present the distribution of 

thereviewed publications according to journal publisher 

(fig.1.a)and prediction horizon (fig.1.b). 

C. Monthly/Daily/hourly solar radiation prediction 

In existing studies works, we discover different prediction 

horizons: monthly, each day, and hourly. In fact, month-to-
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month prediction permits a realization of a pre-sizing of sun 

devices, at the same time as the day by day and hourly sun 

radiation values are essential for a dependable and specific 

sizing. Indeed, our first standards of study are to categorize 

papers with the aid of the prediction horizon. The acquired 

results of month-to-month and each day/hourly sun radiation 

prediction category are illustrated in Table III and IV 

respectively. In these tables, we've categorized the courses 

chronologically by way of specifying the anticipated factor, the 

ANN architecture, the location, and the corresponding overall 

performance assessment signs[16,17]. Tables display that more 

works were achieved at the prediction of world solar radiation 

in comparison with diffuse and beam (direct) additives. 

Furthermore, we observe that the selected research burns up to 

forty neurons in a single hidden layer and few of them 

undertake two hidden layers with up to sixty-nine neurons. The 

ANN models used one of a kind input parameter depending on 

available meteorological and geographical statistics. 

Concerning overall performance assessment signs, the 

maximum used in examined articles are R2, MAPE, RMSE, 

and MBE. The found MAPE values falls in the range [0.3 - 

10.1] which is high prediction accuracy according to [18]. All 

the models show good performances with a coefficient of 

determination (R2) between 0.82 and 0.99. 

V. DISCUSSION AND RECOMMENDATION FOR 

FUTURERESEARCH WORKS 

In the following section we will point out some observations 

and problems we have noted during our study of the already 

mentioned papers with our corresponding recommendations. 

 To take a look at and validate sun power prediction models, 

long term climate data are required. However, such data aren't 

effortlessly available due to the excessive price of measuring 

devices and the issue inaccessibility of the measuring websites 

which puts intense dilemma in conceiving reliable and correct 

fashions [19]. Through our inspection of the studied literature, 

we've got noticed the dearth of a fashionable database having a 

large range of entering kinds with the recording intervals of 

facts. Also, the education and test subsets in the sort of 

database need to be statistically representative in order to have 

correct fashions (One rule of thumb is that the education set 

size must be 10 times the community weights to accurately 

classify information with ninety% accuracy [20,21]). In all the 

ANN fashions, the range of hidden layers and corresponding 

neurons is decided experimentally (which may additionally 

require massive computational evaluation) and there may be no 

mentioned systematic method to optimize this number. This 

task remains an open and challenging problematic and must be 

addressed in future works. Genetic algorithms, Particle Swarm 

optimization, simulated annealing techniques can be 

considered as optimization techniques for this aim[22]. 

 

 

Fig. 1. Distribution of the reviewed publications according to 

journal (a), according to prediction horizon (b)

 

Table 3: Monthly Solar Radiation Prediction Publication of Our Study 

Component Reference Authors Journal 
The ANN 

architecture 
Performance indicators Location 

Global [19] 
A.K. Yadav et 

al. 

Renew. 

Sustainable 

Energy Rev. 

One Hidden Layer 

(5-10-1) 
MAPE(%) = 6.89 India 

Diffuse [20] Y.Jiang Energy Policy 
One Hidden Layer 

(2-5-1) 

R
2
=0.90 

MPE(%)=1.55 

MBE(MJ/m
2
)=0.040 

RMSE(MJ/m
2
)=0.746 

China 

Global [21] J.Mubiru et al. Solar Energy 
One Hidden Layer 

(6-15-1) 

R=0.974 

MBE(MJ/m
2
)=0.059 

RMSE(MJ/m
2
)=0.385 

MAPE=0.3 

Uganda 

Beam [22] S.Alam et al. 
Renewable 

Energy 

One Hidden Layer 

(7-3-1) 

RMSE(%)= from 1.65 to 

2.79 
India 

Global [23] 
F.S. Tymvios et 

al. 
Solar Energy 

Two Hidden 

Layer (3-46-23-1) 

MBE(%)= 0.12 

RMSE(%)= 5.67 

Cyprus 

,Athen 
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Global [24] A.Sozen et al. 
Energy Coners. 

Manage. 

Two Hidden 

Layer (6-2-5-1) 

MAPE(%)= 6.735 

R
2
= 0.993 

RMS(%)= 4.465 

Turkey 

Global [25] A.Sozen et al. Applied Energy (6-N/A-1) 
MAPE(%)= <6.73 

R
2
(%)= 99.89 

Turkey 

Global [26] 
A.S.S.Dorvlo et 

al. 
Applied Energy (5-N/A-1) RMSE(%)= 0.83 Oman 

 

• From posted literature, the best desire for geographical and 

meteorological enter parameters are vital to expect sun 

radiation with reliability and higher accuracy. Unless few 

studies running in this tricky [23, 24], there is but no 

automated technique sporting out the choice of maximum 

relevant input variables for ANN models.  

• In the work of [25], the impact of the sunshine period at the 

prediction accuracy has been highlighted. This observation 

have to be generalized to peer the impact of every variable on 

the overall ANN model performances. 

 

• Regarding desk III and IV showing the fewness of papers on 

diffuse and beam solar radiation predictionthe use of ANN and 

because of the significance of those components for the 

strength packages, greater studiesare required in destiny 

works[26,27]. 

• In order to pick out the first-class ANN prediction models, a 

comparison of various ANN fashions such as MLP, RBF, 

Generalized Regression Neural Network, and so forth. In the 

prediction of solar radiation has been finished [28-30]. 

Unfortunately, confined attention has been given to the 

assessment between ANN and different prediction models [31, 

32, 33]. 

• As indicated in [34], special ANN fashions want to be 

evolved the usage of latitude, longitude, altitude, 

extraterrestrial radiation as entering parameters and checked 

for accuracy[35]. This could be useful for the ones places 

wherein no meteorological stations have been hooked up even 

if it is found that range and longitude have minimal impact on 

solar radiation prediction as established in [36]. 

CONCLUSION 

Accurate prediction of global solar radiation is very important 

for all solar energy applications. Solar radiation is estimated by 

number of solar radiation models. In this paper a detailed study 

on papers using ANN models are reviewed. The use of 

artificial neural networks in solar energy estimation was 

thoroughly investigated in this paper. An in-depth familiarity 

with the consistency and variability of solar radiation is 

essential for the development of renewable solar energy. The 

superior capacity of ANN models to describe dynamic, non-

linear, and time-varying input-output systems makes them the 

preferred choice for accurate solar radiation forecasting. 

Consequently, this page compiles one-of-a-kind experiments 

with a primary emphasis on artificial neural network models 

for solar radiation forecasting. Our research also features an 

updated evaluation to better inform future investigations into 

this field. It makes use of a well-established body of literature, 

time frame for projection, artificial neural network design, and 

measurements of overall success. Investigating these manuals 

has also served to draw attention to issues like the lack of a 

universal database (covering a variety of input types and 

recording eras) and the absence of a scientific method for 

creating the ANN's architecture. In addition, there is no 

mechanism for choosing the most important input variables for 

ANN designs until some research is undertaken on the topic. A 

few articles have been found that use artificial neural networks 

to calculate the sun's radiation output (spread and beam). it can 

be concluded that papers using ANN model give better results 

than classical regression methods and these methods offer 

many advantages over traditional approaches. 
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