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Abstract: The British Mathematician Hardy and the German 

Physician Weinberg, in evolution the genetic make up of 

species and population may change over time, some traits may 

be lost, other new one arises, while some persist unchanged. 

Though chance plays a larger role in the inheritance of traits in 

a single parent cross, understanding how this plays out in the 

evolution of a population requires a Stochastic modeling. Let 

forces on a single gene in a large population. To describe the 

variability of this gene among the population members, we use 

allels that are certain type of frequency, few nuermical 

examples reviewed. 

Keywords: Hardy-Weinberg Law, Branching Process, Genetic 

Threshold, Eigen values and vectors, Fokker-Plank Diffusion 

equation. 

I. INTRODUCTION 

1.1Gene Frequency in population; MN blood type 

The presence of each of the allels M and N be detected through 

antigene tests. A person with genotype MM has type M blood 

and a person with genotype NN has type N blood (The two 

allels M and N are thus codominant, as both are equally 

expressed in the phenotype. 

Numerical Example (1); 

Suppose in, a population that 60 individuals have type M 

blood, 101 individuals type MN blood and 53 individuals type 

N blood for a total population size of 214. Because each person 

carries two allels of the gene, there are a total of 2 (214) = 428 

allels in this data. To determine the frequency of M allels, we 

note that each person of M blood type carries 2 those of type 

MN say 1 and those of N carry 0. Thus the frequency of the 

allel is 

M: 2(60) + 1 (101) / 428 = 0.52 

N: 1(101) + 2 (53) / 428 = 0.48 

Adding gives to 1. Notice, the genotype frequencies in the 

population are 

MM: 60/214 = 0.28, MN:101/214 = 0.47, NN = 53/214 = 0.25 

We can use these to calculate allel frequencies also, but 

because each genotype involves, 2 allels, we have to divide by 

2 to account for the change in the number of objects 

M: 2 (0.28)/2 + 1 (0.47)/2 = 0.28 + 1/2(0.47) = 0.52 

With a similar calculation, giving the frequency of N 

½(.49992) = .48 

Eggs \Sperms  A p   a q  

 A p   2AA p   Aa pq  

 a q   Aa pq   2aa q  

The results, showing frequencies of three genotypes produced 

due to random mating in a population having allels ‘A’ with a 

frequency ‘p’ and allel ‘a’ with frequency ‘q’. Types of 

random Mating combinations and their relative frequencies in a 

population containing 
2 2,2  and p AA pqAa q aa  genotypes. 

 

Males Genotypes and frequencies 

 AA   Aa  aa  

Femal

es 

2p   2 pq  2q  

Genot

ypes 

AAp  

and 

Frequ

ency 

Aa  

Aa 

AA  

p 

Aa 

pq 

1/ 2 1/ 2AA Aa
 

32 p q  

1/ 4 1/ 2 1/ 4AA Aa aa 
 

2 24p q  

 

2pq 

1/ 2 1/ 2Aa aa  

 

 

aa 

1.2 Hardy-Weinberg Law and a Markov Chain in Genetics 

In a large population of individuals, each of whom posses a 

particular pair of genes is classified as being of type A or type 

a. Assume the proportion of individuals whose gene pair are 

AA, Aa, aa are respectively 

 0 0 0 0 0 0,  and 1 ,p q r p q r    when two individuals 

mate, each contribute one of his or her genes chosen at 

random, to the resultant offspringconsidering these proportions 

p, q and r they are easily obtained by focusing our attention on 

an individuals of the next generation and then determining the 

probabilities for the gene pair of that individual.To being, note 

that randomly choosing a parent and then randomly choosing 

one of it gene is equivalent to just randomly choosing a gene 

from the total gene population. By conditioning on the gene 

pair of the parent, we see that, a randomly choosen gene will 

be type A with probability 

       0 0 0/ / /P A p A AA p P A aa q P A aa r    

0 0 / 2p r  

Similarly, it will be of type a with probability 

  0 0 / 2P a q r   

Thus, under random mating a randomly choosen number of the 

next generating will be type AA with probability p, when 

     
2

0 0 / 2P p A p A p r    
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Similarly, the random choosen member will be type aa with 

probability 

     
2

0 0 / 2q p a p a q r    

and will be type Aa with probability 

      0 0 0 02 2 / 2 / 2r p A p a p r q r     

Since, each member of the next generation will be independent 

of each of the three gene types with probabilities p, q, r it 

follows that the percentage of members of the next generation 

that are of type AA, Aa or aa respectively p, q and r. 

    
2

0 0 0 0/ 2 / 2 / 2 / 2p r p r p r q r       

  0 0 0 0 0 0/ 2 / 2 / 2p r p r q r      

 0 0 0 0 0/ 2 since 1p r p q r      

 P A  

The fraction of the gene pools that are A and a are the same as 

in the initial generation. From this it follows that, under 

random mating, in successive generation, after the initial the 

percentage of the population having gene pairs AA, aa and Aa 

will remain fixed at the values ,  and p q r . Suppose now, that 

the gene pair population has stabilized in the percentages 

, ,  and p q r  let us follow the genetic history of a single 

individual and her decendents (for simplicity, assumes that 

each individual has exactly one offspring 1, so for a given 

individual). 

Let nx  denote the genetic stage of her decendents in the n
th

  

generation, the transition probability Matrix of the Markov 

chain namely. 

 AA aa AA 

AA / 2p r  0 / 2q r  

aa 0 / 2q r  / 2p r  

Aa / 2 / 4p r  / 2 / 4q r  / 2 / 2 / 2p q r   

Is easily verified by condition the stable if the randomly 

choosen mate, it is quite intituitve, that the Limiting 

probabilities for this Markov Chain (which is also equals the 

fraction of the individual descendants that are in each of the 

three genetic statutes), should just be ,  and p q r . 

Theorem 1: 

For an irreudicible ergodic Markov Chain lim n

n
p


 exists, and 

is independent of i, lim ,  0
j

n

j i
n

p j


   

Then j is the unique nonnegative solution of  

0

,  0j i ij

i

p j 




   

Reduced to 

     
2

/ 2 / 2 / 4 / 2p p p r r p r p r       

     
2

/ 2 / 2 / 4 / 2q q q r r q r q r       

1p q r    result is established. 

1.3 Deviation from Hardy-Weinberg Equilibrium 

The changes in gene frequency can be produced by reducing in 

(i) population size (ii) selection (iii) Mutation (iv) Genetic drift 

(v) Migration in Human genetics, the process of formation of 

new species. Each population is consists of two or more 

subpopulation with n different gene frequencies. 

Numerical Example (2) 

While count, the number of AA, Aa and aa in a single locus in 

the population defined by the A and a allels and we shall 

assume incomplete dominance, so that, Aa heterozygote may 

can be distinguished Phenotypically from AA and aa 

homozygotes, we then count the numbers of AA, Aa and aa 

individuals in a given generation immediately before and 

immediately after some selective event, then in two decision of 

point we can calculate (i) A Survival Rate (ii) Relative Fitness 

(iii) Selection coefficient 

Number of individuals in the population according to the 

genotype 

 AA Aa aa 

Before Selection 4100 5000 2200 

After Selection 3900 4000 1200 

(i) Survival Rate    3900/ 4100 0.95AA   

4000/5000 0.80Aa    

1200/ 2200 0.55aa    

(ii) Relative Fitness (W) 0.95/ 0.95 1.00AAW    

0.80/ 0.95 0.84AaW    

0.5/ 0.95 0.58aaW    

(iii) Selection coefficient 1 0AA AAS W    

1 0.16Aa AaS W    

1 0.42aa aaS W    

The genotype with the largest Survival rate is defined as the 

Fittest and is used as the standard for the relative fitness (w) of 

all other genotypes. 

The action of selection in a statistical problem, Haldene, 

Fisher, Wright, Li (1948) and Lernes (1950), suppose that a 

dominant gene A has the frequency q and its recessive allel a 

the frequency  1 q , in the gene pool of a sexually random 

breeding population. According Hardy Weinberg Rule 

(Binomial Square Rule), the population consists of three 

genotype with frequencies 

   
2 22 2 1 1 1q AA q q Aa q aa     . Let the adaptive 

values (w) of the dominants AA and Aa, be equal to unity 1 

and that of the recessive to  1 s . 

In other words, for every unit of offspring produced by the 

dominant, the recessive produces  1 s  offspring of the 

average. The value is called Selection co-efficient, the 

frequencies of the three genotypes before and after selection 

will be 

Genotyp

es 

AA Aa aa Total 

population 

Adaptive 

value 

(W) 

1 s  1 s  W  
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Initial 

frequenc

y 

2q

 

 2 1q q

 

 
2

1 q  
1 

Frequenc

y after 

selection 

2q

 

 2 1q q

 

  
2

1 1s q 

 

 
2

1 1s q 

 

The frequency q of the gene A in the next generation will be  

     
22

1 1 / 1 1 2 1 1q q q q s q q s q              
 

The increment, of the frequency of the gene A is one 

generation will be  

   
2

1 / 1 1q sq q s q     
 

 

Numerical Example (3) 

Adaptive value (w) 0 0.4 0.9 0.99 1.5 

Selection coefficient 

(S) 

1.0 0.6 0.1 0.01 -0.5 

Frequency after one  

Generation of 

Selection (q) 

0.67 0.58 0.5128 0.5012 0.441 

Increment of gene 

Frequency  q  

0.17 0.08 0.0128 0.0012 -

0.056 

1.4 Effect of Selection 

The genes A and a be equally frequent, in the original 

population, so that  1 0.5q q    let the adaptive value of 

the dominants (AA and Aa) be unity, and suppose that, 

recessive allels aa have the adaptive values of 0 (a recessive 

lethal) or of 0.419 semilethal) or 0.9 or 0.99 (subvitals) or 1.5 

(Supervital). The frequencies q of the gene a in the next 

generation, and the increments of the gene frequency, will be 

then for small selection coefficient(s) an approximate formula 

for the number of generation (n) necessary to change the 

frequency of a deleterious recessive gene from 0q  to nq  is as 

follows: 

 0 0 0 0/ log /1 ,1 /n n e n nns q q q q q q q q     

Under the Hardy Weinberg equilibrium assumptions, states a 

population having genotypic frequencies 

   1 1 1 2of ,2 of p A A q A A  and  2 2of R A A  achieves after 

one generation of random mating, stable genotypic frequencies 
2 2,2 ,p pq q  where p p q   and q q r  . If the initial 

frequencies ,2 ,p q r  are already of the form 
2,2 ,p pq q  then 

these frequencies are stable for all generation of the 

assumption doesn’t hold, the law itself may not hold. Suppose 

as a continuous time analogue to the above that in a smallest 

time dt a fraction dt of the population dies and is replaced, by 

random sampling from the population at large, under this 

system, the frequency p of 1A  doesn’t change with time, but if 

 p t  is the frequency 1A a at time t, then 

     21P t dt p t dt p dt     

Passing to the limit in this equation 

    2/dp t dt p t p    

So that,       2 20 expp t p p t p     

Clearly, a population initially in H.W. equilibrium will remain 

in equilibrium, but for non equilibrium population, the 

equilibrium state is approached asymptotically, when 

Hardy Weinberg proportion strictly apply, later on, when 

considering, finite population, the population will be counted at 

the age of sexual maturing. The differential reproductive rates 

may be due to several causes, including the particular different 

survival rates and different offspring distributions, the 

quantities w11, w12 and w22 will be called ‘fitness’ of the 

threeGenotypes, when these are operating and genotypic 

frequencies will usually change from one generation to the 

next, with the fitness given above, the frequency the various 

genotypes in the following generation now satisfies the 

equation 

          
2 22 21 1 1 1 1 1 1

11 12 11 12 12 22 12 22: 2 : ;2 ; ;2 ;P Q R W P W Q W P W Q W Q W R W Q W R P p q q     

Where   1

11 12 11 12 222p W P W Q W P W W R     

Clearly one generation, of random mating, H.W, proportion are 

achieved. In the same argument shows that 

 
2

11

11 11 11 11 11 11,2 ;2 ;P q R P P Q q  

            
2

2 2
1 1 1 1 1 2 1 1 1

11 12 11 12 22 1 12 222 1 ;2 2 ;W p W P q W p w p q w q w p q w q    

 

It follows that the equation 
11 1p p  no longer holds good in 

general constant but for non equilibrium populations the 

equilibrium state is approached asymptotically. 

II. MATERIALS AND METHODS 

2.1 Branching Process: Population genetics 

Branching process is evolution of aggregate of systems where 

components can reproduce, be transformed and die the 

transition being governed by stochastic law the word 

‘Branching process’ coined by Kolmogorov and Diminintiev 

(1947) to describe the stochastic process of Population 

Genetics. William Watson (1873) formulated the problem of 

Extinction families Fisher (1930) studied the survival of the 

progeny of mutant gene, Haldane (1927) applied in Population 

genetics. 

Theorem 2: 

Bienayme-Galton-Watson process is a Markov Chain 

 , 0,1,2,...nZ n   the non-negative integers  

1 1 2

1

...
n

n

Z

n z

r

Z K k k k



      

And ;  1Kr r   are identically independent random variables 

with probability distribution 

  ,  0,1,2,...jP k k p k    

1iP   

We interpret nZ  as the number of objects in the n
th

generation 

of a population of family unless the contrary is states we 

always assume that 0 1.z   
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The probability generating function  h s  of Z. 

   2 2

0

, 1j j k

k

k

H S E S p S s




    

will be referred to offspring generating function. 

Defines its iterates,     1n nh s h h s   

   1h s h s  

 0h s  

Banayne Galton and Watson (1874) proved that the generating 

function of Z  is the n
th

 iterate  nh s  of  h s , in order to 

avoid trivariate, we assume throughout 1,jp   for any 

0 1, , 1,nj p p   so that  h s  will be strictly convex on the 

unit interval. 

The process Z is called subcritical, critical, supercritical 

according as 

   1

1 1 1M E R h   

Is less than, equal to or greater than 1, 

 1

1

/ /
nZ

n n

r

E Z Z E kr Z



 
  

 
  

 ZnE K  

1  andZm  

Hence   n

nE z m  

Simple Calculation yield

     1 2

11 / 1   1n n

n jV z m m m m   
 

1m   

Where  2 v z   

2.2 Incidence (Survival); Threshold Characters 

Quasi continuous variations (1952), the phenotype values are 

discontinuous but the mode of inheritance is like that of 

continuously varying characters 

 

 

Illustration of a threshold character with two visible classes. 

The vertical line marks threshold between the two phenotypic 

classes, one of which is cross-hatched. The population depicted 

on the left has an incidence of 10% that on the right an 

incidence of 90%.Incidence (survival) on the visible scale 

individuals, can have only two values 0 or 1 groups of 

individuals, however such as families or the population has a 

whole can have any value, in the form of proportion or 

percentage of individuals in one or other class. This may be 

referred the incidence of character. The interpretation of 

genetic analysis of threshold character is therefore facilitated 

by the transformation of incidence to values on the underlying 

scale. The transformation is easily made by normal cases. The 

standard deviation and population Mean of acharacters with 

three visible classes may be in the general form the following 

way. 

2.3 Population Genetics: Fokker-Plank Diffusion Equation 

Inbreeding, Natural Selection, Genetic recombination the 

theory of Stochastic Process to genetical and evolutionary 

theory should therefore have already became apparent, we 

suppose that there is a population of size Nt, each individual of 

which carries a pair of genes AA, Aa or aa, the number of A 

genes in the total population will be denoted by At, and we 

write further  2t t tA N p . We shall assume that the 

Bivariate process At, Nt is a Markov one in time t. This can’t be 

strictly true, for the exchange genes will be related in 

individual genealogical lines to generation times, which we 

have seen must age-dependent birth and death rates, but over 

the entire population it is a more realistic assumption, except 

perhaps for short-term effects if generation times are strictly 

periodic, Any effect of their genes has of course been ignored. 

The detailed evolution of At and Nt will also depend on the 

Phenotypic combination at any instant, and its breeding 

characteristics. We can only hope to be able neglect such factor 

in detail if we review the evolutionary changes in a rather 

broad manner, rather than of the simple Additive model. We 

have seen that the behavior of a finite population can be 

fundamentally different according to whether its total size is 

expected to increase or decrease, and we may expect this to 

apply also to a population genetic constitution. In many 

situation it is reasonable to suppose that the total size tN is 

fairly restricted by the environment, and keeps approximately 

constant, but as Felier (1951) has stressed, this is a drastic 

assumption, which severely limits the class of process studied. 

It would be useful, as in the process of the last selection, to 

study the joint distribution of tA  and tN  under conditions, 

under general Mutation and Selection changes this is, however 

not easy and we consider here the solution under the selection, 

but usual assumptions of N constant, following a treatment of 

due to Malecot (1952). 

As tN N  is constant the Markov process is one in tA  only 

or equivalently in 
1

2

t
t

A
p

N
  equation for 

   t

tM Q E e  is  

 

 
 ,

t

t

M
M

t d


  



  
  

  
 …(1) 



  

Conference Proceeding Issue Published in International Journal of Trend in Research and Development 

(IJTRD), ISSN: 2394-9333, www.ijtrd.com 

International Conference on  Emerging Smart Computing and Informatics (ICESCI–2020), Organized by Research Department of 

Computer Science, Joseph Arts and Science College on 7
th

 & 8
th

 February, 2020       42 | P a g e  

where  

2

0

/

, lt log

tP

t

t
t

t

e
t

P
P E



 



 

 
 
 


 

We now make the following simplifying assumptions. 

(1) For small 
tt , there is a chance KNPtQt t  where 

1 ,t tQ P   of a single gene transition a A .Due to the 

random shufulling of generation the offspring of any mating 

(Strictly speaking, these changes depend on the phenotypic 

male and female frequencies of the AA, Aa and aa, gene pairs, 

even under random mutation rate u from A to a i.e the chances 

of such a  mutation t  is 2NPt similarly the rate from a to A is 

v. 

(2) Selection is assumed to operate on the ratio Pt/Qt of A to 

genes, changing its value deterministically (again for Nt 

(constant, it seems difficult to formulate this more realistically 

by amount of t  Pt/Qt in t; this implies in Pt of

 t t t t t t t tP PQ VQ P       

Assumption (ii) and (iii) gives a change in Means of Pt of 

change in mean but a variance 
1

2
t t

t
KPQ

N


 the variance due 

to (ii) is  

The third-Cumulants contribution from (i) and (iii) is 0(1/N
2
) 

Hence    , t t t tQ Q Pt PQ U P       

 2 3 21 1 1
/ 0 /

2 2 2
t t t tKP U P N v    

          
….(2) 

The equation (1) then becomes a Fokker plank diffusion 

equation 

The equation (1) thus becomes a diffusion equation, we may 

neglect the terms of  20 1/ 0N   that, Q only appears 

explicitly in as a Quadratic equation (1) is more, a partial 

differential equation of the second order in d/Dq. If we assume 

that the sol. Of (1) has a limit distribution, their must satisfy 

the equation 

, 0
M


 

 
  

 
… (3) 

For example, if the mutation rates v, and U are zero, we have 

the caution 

2 2

2

1

M
K N




 

    
   

    
… (4) 

This has the solution A+B, moreover, from the full equation 

containing / ,tM t   we see that / 0,tM t    when 

0 or 4 /Q N t . 

Hence for these values of Q, the limiting  M Q  is equal to 

its initial value are, so that  

A+B=1, Ae-4N

/k+B=e-4N


/k 

where M=1-e4N r /k/1-e-4N /k(e

-1)+1 … (5) 

Giving the complementary chances of extinction of the A or a 

genes in the absence of mutation, Malecot has shown further 

that this distribution is infact the limiting solution of (1) and 

(2) for u and V zero. 

As a second fairly tractable care, we suppose 0   and ,u V  

are  0 1/ N , then expanding tM  in powers of u, We find 

the equation for  tMs E p . 

     1 2

1
/ 1 / 1 0s s f fms dt sv m m u m ks s kN ms ms

N


 
          

 
 

And in particular, as 0 1m   

 1 1 11/ 1m dt v m um      

When 

     1 1 / ] /m v e u v t U V re U v t v U v           
                         … (6) 

The equation (6) may be solved successively for 2 3,m m  and it 

is evident that sm  has a limit as t   for allels. This must 

therefore be given by the recurrence relation. 

   11 4 / 0sm s N u V k
N

       

 1 1 4 / 0 1/sm s Nv k N     … (7) 

Which defines the continuous distribution from P (in 

depending of r) 

  / 4 / 1 1 4 / 1f p dp P Nv k P NU k dp    … (8) 

This result may be obtained more simply from a general 

formula due to wright 

        21/ exp 2/ / 2F P P m p t p dp


 … (9) 

Where m(p) is the change in means per unit time, and (p) the 

change variance, we put 

M(p) = v(1-p) and    2 1/ 2 1 /p KP P N    and (8) 

follows. The formula (9) Qa, however obtained merely by 

requiring the mean and variance of any stationary distribution 

with probability density to remain constant and the solution (5) 

shows that it doesn’t give the correct solution in all cases. 

The effect of selection, A gene which is selectively 

advantageous against one genetic background is 

disadvantageous against another, it will be shown later that, 

such interaction effects, can have major evolutionary 

consequences, to define, at the time of conception of any 

generation the frequencies of the genotypes are P, 2Qt, R then 

these contributes gamets to form the individuals in the 

following generations in the proportion W11P: 2W12Q:W22R 

(Note that the population is being considered at the time of 

form formulation of Zygote the gametes of the previous 

generation, when selective differences exist this is only time by 

extinction we mean the event that the random variable (Zn) 

consists of Zeros for all but a finite number values of n and we 

define the probability q of extinction  lt 0
n

q hn


  

From the convex nature of the probability generation function 

we have the following fundamental theorem due Steffiemson 

(1932) 
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Theorem (2) The extinction probability q of the Biename 

Galton Watson process is the smallest non-negative root of the 

equation   .n s s  It is 1 if 
1 1m   and 1  if 

1 1m  . Book 

(1966) has hown hat if we can find an upper bound  g s  for 

 h s  the q will be bounded by the smallest non-negative root 

q1 of  g s s  and 1q  will be the upper bound for the 

probability of extinction. Since  h s  is strictly convex on the 

unit interval as  ,n h s  increases to q in 0 ,s q   

decreases to q in 1q s   and  nh s s  if s q  or 1. 

Also since,  1 , 1/ 0np Z k i Z k      all the states 

1k   are transient and hence with probability 1, 0nZ  or as 

n  then we have 

Theorem (3) Whatever be the value of m1, the sequence 

 nZ  converges as n  to or 0 respectively with 

probability 1 q  or q . 

Churchil (1967) has proved that  lim n
n

P Z k ak


   exist 

for all k, if the generating function governing production in the 

n
th

 generation, n  converges sufficiently to the 

degenerating function, this result is generated by Kaplan 

(1973) for Multiprocess, when H.W proportions strictly apply 

later on, when considering finite population, the population 

will be counted at the age of sexual maturity, the differential 

reproduction rates may be due to several causes, including the 

particular different survival rates and different offspring 

distributions, the quantities W11, W12 and W22 will be called the 

‘fitness’ of three genotypes, when these are not equal selective 

forces are operating and genotype frequencies will usually 

change from one generation to the next. With the fitness, given 

above, the frequencies will usually change from one generation 

to the next. 

With the fitness given above, the frequencies of the various 

genotypes in the following generation now satisfy the equation 

2.4 Selection: The response and its prediction, genetic 

properties of the population by the choice (1) individuals to be 

used as parents, which constitute selection and the (ii) second 

by control of the way in which the parents are matted, which 

embrass inbreeding, cross breeding, the basic effect of 

selection is to change the array of frequency.Non-recessive A1 

mutant is introduced into a presumly pure 2 2A A  population, 

then homozygotes A willn’t usually appear until the frequency 

of a is quite high. We can’t normally, Multiple alleles, 

1 2, ,..., kA A A  each with non-negligible frequency. Suppose 

that the fitness of 
i jA A  individuals is 

ijW  the frequency of 1A  

is 1P  and that genotype frequencies are in Hardy-Weinberg 

form. Thus, the mean fitness of the population may be taken as 

unity with this convention, if the new mutant is denoted by 

1kA   we denote by  1j kA A  . We denote the fitness of A A by 

U. In deriving the survival probability of formation of 

homozygotes mutants can be ignored and will then describe an 

1j kA A   individuals as a Mutant of type. If in generation t the 

number of type i mutants is  iN t , then clearly 

   1 ,    1,2,...,nj j i i

i

E t P u N t i k  
    …. (10)

 

In Matrix term, this may be written 

   1nE t Un t 

…. (11)

 

when  1 1

1 ... kU PU P p p    

 1 ...f ku u u  

to obtain survival probabilities it is necessary to know not only 

the number of mutants, but the complete joint distribution of 

the number of 1kA   offspring from 1i kA A   parent. 

If the joint generating function of this distribution 

 ...i i kf Q Q  then  1,1,... 1f   and writing 

   ,...i if Q f q   1

1 1 if u .Now any mutant offspring 

from an 
i k jA A 

 parent will be A. A with probability 
jP  from 

this it follows, that  1,...,i kf Q Q  assumes the specified form 

    1 1,..., ... ,i k r i i kf Q Q f PQ P Q    Harris (1963) 

Theorem can be applied. 

Theorem (4) 

For a multiple type Branching process governed by equation 

(10) is that is for a set of objects of various types, each of 

which can produce offspring of any type according to 

Branching process law, the probability of the survival of 

Mutant 1kA   is positive of largest eigenvalue of M exceeds 

unity. In this case, if Q is the probability of extinction mutant 

given a single initial mutant type i, the Q are the unique 

positive selection (<1) of two set of equation. 

 1,...,    1,2,...,i i kQ f Q Q i k   

It is useful to consider first the condition that the various iQ  

be less than unity. The show that M is of rank unity and thus 

has only one non-zero eigenvalues. This eigenvalue must then, 

be identical to the sum of all eigenvalues, which trace (M) of 

i iPU . Thus the necessary and sufficient condition that 

Survival probabilities be positive 1i iPU  . When holds, 

the easiest way to solve the system of equation is to multiply 

the equation ip  and add over i.Defining, this leads 

i iP  Often Q is easily the quantity of interest, since if 

we don’t know the exact genotype formed by initial mutant, it 

is reasonable to assume that this genotype is 1i kA A   with 

probability Pet. If any event, individuals i  values are best 

found by solving for   and calculating each i directly 

Selection index yI Px WP   

Where I is the true index by Means of which individual are to 

be chooses. W is a factor by which the Phenotypic value 

character Y is to be Multiplied by Selection differential 

2/p pR S h   

Relationship between genotype frequencies and gene 

frequencies for allels in a population of H.W. equilibrium. 

g
en

o
ty

p
ic

 f
re

q
u

en
cy

 



  

Conference Proceeding Issue Published in International Journal of Trend in Research and Development 

(IJTRD), ISSN: 2394-9333, www.ijtrd.com 

International Conference on  Emerging Smart Computing and Informatics (ICESCI–2020), Organized by Research Department of 

Computer Science, Joseph Arts and Science College on 7
th

 & 8
th

 February, 2020       44 | P a g e  

 

CONCLUSION 

Finally linear Models of Structured population 

 P fP dp f d P     which means given a current 

population P and the fecundity and death rates f and d, we can 

predict the changes in the population.  tP P t the size of the 

population measured on day t is P P P   is the differences 

or change in population between two consecutive days, now 

we ultimately care about is understanding populationp, not just, 

Bp, but    1 ,t t tp p p p f d p f d pt         

some constant together by letting  
1

1
t

f d t


    our 

model of population growth has below simply 

1tp p   

population ecologist often refer to the constant of the finite 

growth rate of the population, from this model we can now 

predict population an any future times. 

 1 1 ,tP f d pt     a difference equation, when the 

difference doesn’t appear and  p f d dp    notice that in 

this model, we ignore the males, the female population is the 

important one track to understand the long term growth or 

decline of the population.The interpretation of genetic analysis 

of threshold character is therefore facilitated, underlying scale. 

The transformation is easily made by reference to a table of 

probabilities of the normal curve. 

The threshold is a point of truncation whose deviation from the 

population mean can be found from the proportion of the 

population falling beyond it. 

Fisher and Yates (1943) is convenient to use because it refers 

to a single tail of the distribution and deviates confusion over 

the sign of the deviation. The transformation from the visible 

to the underlying scale enables us to state the mean phenotypic 

value of a population or family in terms of its standard 

deviation, and to compare the means of different populations or 

families provided they have the same standard deviation. It is 

convenient to take the position of the threshold as the origin or 

zero point, on the underlying scale and to express the Mean as 

a deviation from that threshold. Thus if the incidence of the 

character is, for example 10 percent a table of the normal curve 

shows, that the threshold exceeds the mean by 1.28, the 

population Mean refer to the threshold as origin is therefore -

1.28 or if the incidence curve 90 percent than the population 

Mean would be 1.28 for any comparison of means, however it 

is necessary to assume that the population compared have the 

same variance on the underlying scale. If reasons are known 

for the variances not being equal in comparisons for example 

between inbreeds, F1’s and F2’s, then the means can’t be 

expressed on a common scale that allows a valid comparison to 

be made. This is as we can go with a character that is simply 

expressed only two classes. The mean of a population or group 

can be stable, but not the variance because the Mean has to be 

started in terms of the standard deviation. We can however, 

subjects the observed means of families to analyse and 

compute the heritability of the character. The heritability in 

threshold character is treated by A. Robertson and Lerner 

(1949) and Dempster and Lerner (1950). If the character has 

three classes in its visible scale then comparison can be made 

the variances of populations as well as between the Means 

simple class. 

For example threshold character with three visible classes, in 

two populations with incidence as shown the axes are marked 

in threshold units and the population means are indicated by 

arrow. 

Class 

X I Z 

Incidence % Population (1) 60 15 25 

Population (2)   20 10 70 

The deviation of the thresholds from the population means 

from a table of normal curve are as follows 

X/I I/Z Threshold 

Intervals 

Population (1)  –0.25 0.67 0.42 

Population (2)  –0.84 –0.52 0.32 

 

 

The intervals between the two thresholds, given above on the 

right are found by subtraction of the deviations of the two 

thresholds in each population. These threshold intervals are 

supposed by hypothesis to be equal on the underlying scale. By 

assigning the threshold intervals the value of one ‘threshold 

unit’. We can therefore express the standard deviation of the 

two population on a common 

Basis in terms of threshold units the std. deviation then 

becomes 

1 2.38   threshold units 

2 3.12   threshold units 
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The mean of the population can also be expressed in threshold 

units, denoted from X/I threshold on origin, they are 

0.25 0.60M      threshold units 

1 0.84 2.62M     threshold units 

The Standard deviation and population Mean of a Character 

with three visible classes may be put in general form in the 

following way, Let ’X’ be the incidence in one visible class 

and Y the incidence in this class with the intermediate class. 

Let the threshold between these two classes be the origin of the 

underlying scale. Let x and y be deviations of the two threshold 

corresponding to the incidence x and y respectively, then the 

standard deviation is 1/ x y  threshold units and the Mean 

is M   . 

/x x y     threshold units 

The comparison of variances in this way depends entries as we 

have pointed out, on the assumption that, the interval between 

the two threshold is constant from one population to antoher. If 

we think again of the hypothetical substances (or) processes, 

whose concentrate or rate determines the values in the 

underlying scale, the assumption is that the intermediate class 

express the same difference of concentration or of rate in the 

two population compared. 
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