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Abstract—This paper proposes a learning scheme for the 

Recurrent Neural Network (RNN) model to predict the 

anesthetic effect on a patient during surgery to support stable 

controlling anesthesia in clinical operation under lack of 

anesthesiologists. The goal of this study is to realize 

dependable control of total intravenous anesthesia (TIVA) to 

support anesthesiologists. To realize dependable control of 

anesthesia, it is necessary to satisfy various restrictions to 

guarantee safety on anesthesia and the use of model predictive 

control (MPC) is effective in controlling anesthesia to meet 

those requirements. In the MPC, the stability of the prediction 

model is very important to guarantee the control performance. 

Also, the RNN is useful for modeling nonlinear systems with 

time variations, such as patient drug response. Although 

stability of an existing learning scheme using the RNN has not 

been analyzed, the paper investigates the stability of the 

proposed learning scheme using the RNN by a manner of 

Lyapunov analysis. 
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I.  INTRODUCTION  

 The application of machine learning (ML) and data science 

to the medical field attracts much attention due to the increase 

in the aging population and a shortage of medical staff [1–3]. 

In particular, the shortage of medical staff (e.g., 

anesthesiologists) presents major problem [4,5]. The shortage 

of anesthesiologists may lead to poor management of the 

patient’s anesthesia and an increased risk of postoperative 

sequelae. To ameliorate this problem and to ensure the safety 

of surgical operations, dosage control systems for total 

intravenous anesthesia (TIVA) have been proposed [6,7]. In 

general, administration of anesthesia requires appropriate 

sedation, analgesia, and muscle relaxation to ensure patient 

safety [8]. For example, physiological information indicating 

anesthetic effects and dose restriction of propofol [9] for 

sedation should be taken into account. The bispectral index 

(BIS) [10] is often used as an index of anesthetic depth. Table 

1 shows the relationship between the BIS value and the 

patients’ condition. Hence, it shows that the desired BIS value 

during surgery ranges from 40 to 60. 

 Although a control scheme for a TIVA using model 

predictive control (MPC) was proposed [11–16] considering 

those requirements, it has not taken into account of time 

variance of BIS. 

Then, scientific researchers have proposed the estimation 

scheme of time variance of BIS using a parametric model 

[17,18] and extended Karman filter (EKF) [19,20]. The 

parametric model was built with the assumption that drug 

absorption in a human body is limited to four fluid 

compartments. 

TABLE I. BJSPECTRALINDEX [10] 

Condition of the 

patients 
Value of BIS 

Awaken From 90 to 100 

Light Hypnosis From 60 to 90 

Desired range From 40 to 60 

Deep Hypnosis From 0 to 40 

 Although the relationship between drug concentration in a 

human body and drug effect assumed to be estimated by 

nonlinear equation [18], the full picture of the action 

mechanism of the anesthetic drug is much more complicated. 

There are more hidden factors like degradation of the liver 

function through alcoholic liver disease [21] or stimulations to 

the patients by the treatment during surgery [15,16]. 

 

Fig. 1. The conceptual diagram of the proposal 

 To improve performance of TIVA using MPC by taking care 

of recurrent but time-variant non-linear factors of human body 

response corresponding to anesthetic dosage, we propose an 

on-line feedback sensing and controlling loop system for TIVA 

as illustrated its concept in Fig. 1. The proposed system can 

model or estimate human body response, that is time transition 

of BIS value, corresponding to anesthetic dosage with 

recurrent neural network (RNN) [22]. And to catch up time 

variance of body condition, the proposed system applies 

stochastic gradient descent (SGD) with a backpropagation 

algorithm as an on-line learning rule [23].  

  The feedback loop procedure of learning with RNN using 

sensed BIS values and controlling anesthetic dosage is 

described as follows: 
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Step 1: The BIS monitor measures the current BIS value of the 

patient. 

Step 2: The BIS monitor sends the current BIS value to the ML 

server. 

Step 3: The ML server updates the RNN model using the 

current BIS value with following SGD algorithm. 

Step 4: The ML server calculates the optimum dosage volume 

by the prediction using RNN model. 

Step 5: If the anesthesiologist accepted the calculated optimum 

dosage volume, The ML server sends the control 

command (the optimum dosage volume) to the infusion 

pump. Otherwise, the anesthesiologist decides the dosage. 

Step 6: The dosage controller controls the infusion pump based 

on the received command. 

Step 7: Back to the Step 1 and repeat the Step 1-6 until the 

surgery operation is finished. 

 This paper investigates stability of the proposed scheme 

learned by SGD dependent on the learning rate to update the 

network parameters and optimization of the learning rate while 

our previous study [22] was not taken into account of the 

stability. Moreover, although other scientific researchers 

proposed an estimation scheme of time transition of drug 

effects using neural networks [24], the stability of those 

schemes were not discussed. Hence, this paper proposes 

learning the prediction model using the RNN to predict the 

anesthetic effect considering the network stability. 

 The main contribution and novelty of the manuscript are as 

follows: 

1. The stability of the RNN is analyzed using a manner of 

Lyapunov analysis [25]. From the analysis, the condition 

of the stability and optimum learning rate for each 

parameter in the RNN model are derived. Furthermore, 

the manuscript proposes the system which can improve 

adaptability and identification speed faster within a 

condition of stability. 

2. Novel performance evaluations considering various 

patient, which were not considered in our previous work 

[22]. From the evaluation, the efficiency of our proposed 

scheme is confirmed. 

 The rest of this paper is organized as follows. In Section 2, 

the system model and our proposed scheme is explained. In 

Section 3, the theoretical analysis of the learning stability is 

performed and the optimum learning rate is discussed. In 

Section 4, performance evaluations using numerical 

simulations is explained. In Section 5, discussion of the 

simulation results is described. Finally, Section 6 concludes 

our work and discuss future works. 

II. SYSTEM MODEL 

 In this section, the procedure of our proposed system is 

described in detail. 

A. Structure of Our Proposed System 

 Fig. 2 shows the diagram of our proposed system. The aim 

of the system is to predict an anesthetic effect and optimize 

drug dosages based on the prediction. In this paper, the 

estimation aspect of the system is focused, in which drug 

dosages 𝑢[𝑡] are optimized in each time 𝑡. The prediction is 

based on BIS estimator using recurrent neural network (RNN) 

model. Moreover, the network parameters were updated using 

training data, 𝑦[𝑡] (normalizedBIS value sensed from the 

patient). The normalization of the BIS value is calculated as 

follows: 

𝑦[𝑡] =
𝐵𝐼𝑆[𝑡]

𝐸0

(1) 

where, 𝐸0 is BIS when the anesthetic drug is administrated to 

the patient. We assumed the value to be measured before 

surgery. 

 

 

Fig. 2. The block diagram of the proposed system 

In next subsection, the composition of the RNN model and the 

estimation scheme of the BISbehavior are  explained. 

B. Recurrent Neural Network Model 

 

Fig. 3.  RNN model 

In this subsection, an RNN model for predicting the BIS 

behavior is described. Fig. 3 shows the  structure of the RNN.  

In our proposed system drug dosages in each time 𝑢[𝑡] served 

as input to the RNN. In the hidden layer, it is assumed that the 

time variance of the drug absorption in the human body is 

expressed as the feature of nodes. In order to express the time 

variance of drug effect in human body,  gated re current units 

(GRU) mechanism [26] is applied. The GRU is one of the 

gating mechanisms to compose the RNN. It can express the 

effect of previous feature to current feature. The composition 

of the GRU is expressed as follows: 

𝑧𝑖[𝑡] = 𝜎(𝑤1,𝑖[𝑡]𝑢[𝑡] + 𝒘𝟒[𝑡]𝑇𝒉[𝑡 − 1]) 

𝑟𝑖[𝑡] = 𝜎(𝑤2,𝑖[𝑡]𝑢[𝑡] + 𝒘𝟓[𝑡]𝑇ℎ[𝑡 − 1]) 

ℎ𝑖[𝑡] = (1 − 𝑧𝑖[𝑡])ℎ𝑖[𝑡 − 1] + 𝑧𝑖[𝑡]ℎ�̂�[𝑡] 

ℎ�̂�[𝑡] = 𝑡𝑎𝑛ℎ (𝑤3,𝑖[𝑡]𝑢[𝑡] + 𝒘𝟔[𝑡]𝑇(𝑟[𝑡] ∘ ℎ[𝑡 − 1])) , (2) 

where ∘  denotes the Hadamard product operator, 

and 𝑧𝑖[𝑡] and 𝑟𝑖[𝑡]  denote the factors to control effects of 

previous features in the hiddenlayers.Those factors can be 

expressed as vectors: 𝒛[𝑡] = [𝑧1[𝑡], 𝑧2[𝑡], ⋯ , 𝑧𝑁[𝑡]]
𝑇

and 
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𝒓[𝑡] = [𝑟1[𝑡], 𝑟2[𝑡], ⋯ , 𝑟𝑁[𝑡] ]𝑇  where, 𝑁  denotes number of 

the GRU units in hidden layer.𝑤1,𝑖[𝑡], 𝑤2,𝑖[𝑡] , and 𝑤3,𝑖[𝑡] are 

weight parameters for input 𝑢[𝑡]which can be expressed as 

vectors: 𝒘𝒊[𝑡] = [𝑤𝑖,1[𝑡], 𝑤𝑖,2[𝑡], ⋯ 𝑤𝑖,𝑁[𝑡]]
𝑇

(𝑖 = 1,2,3). Also, 

𝒘4 , 𝒘5, and 𝒘𝟔denotes the weight vectors to outputs of the 

hidden layers 𝒉[𝑡] = [ℎ1[𝑡], ℎ2[𝑡], ⋯ ℎ𝑁[𝑡]]
𝑇

. 𝜎(𝑥)  denotes 

sigmoid function: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
. (3) 

 

Fig. 4 shows the composition of GRU units. 

 

Fig. 4. Gated Recurrent Units [26] 

Notice that 𝑖  is the index number of the GRU units. These 

weight parameters were updated in our RNN model by the 

learning algorithm. 

 In addition, the estimated value of the normalized BIS �̂�[𝑡] 
were expressed in the output layer. The value ranges 0 to 1, 

and it assumed to be nonlinear. Thus, the sigmoid function is 

applied as an activation function of the output layer and output 

of the RNN model expressed as follows: 

�̂�[𝑡] =
1

1 + 𝑒−𝒘7[𝑡]𝑇𝒉[𝑡]
. (4) 

In equation (4), 𝒘𝟕[𝑡] denotes weight vector of the output layer. 

Finally, by using measured maximum value of BIS 𝐸0 , the 

estimated BIS value 𝐵𝐼�̂�[𝑡] can be expressed as follows: 

𝐵𝐼�̂�[𝑡] = 𝐸0�̂�[𝑡]. (5) 

C. Prediction Algorithm of BIS Value 

Fig. 5 shows the flowchart of our proposed system. The 𝑡end 

denotes the end time of the surgery period. In this flowchart, 

the BIS value is sensedfrom patients and used to update RNN 

model in each time step and converted to training data of the 

RNN prediction model 𝑦[𝑡] through normalization. Using the 

training data 𝑦[𝑡] in each time step, weights in the RNN model 

are updated by stochastic gradient descent (SGD) [23] 

algorithm. In the SGD algorithm, the weights of the Neural 

Network are updated to minimize the value of 

evaluationfunction. The evaluation function 𝐸[t] in each time 

step is defined as square error between the training data 𝑦[𝑡] 
(Normalized BIS) and the output of the RNN model �̂�[𝑡] in 

order to minimize the predictionerror of BIS value. Hence, the 

function 𝐸[𝑡] is defined as follows: 

𝐸[𝑡] =
1

2
(𝑦[𝑡] − �̂�[𝑡])2. (6) 

Using the evaluate function in (6), weights 𝑤𝑖,𝑗(𝑖 =

1,2, ⋯ ,7, 𝑗 = 1,2, ⋯ , 𝑁) are updated as follows: 

𝑤𝑖,𝑗[𝑡 + 1] = 𝑤𝑖,𝑗[𝑡] − 𝜇𝑖,𝑗

𝜕𝐸[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
(7) 

where, 𝜇𝑖.𝑗 denotes learning rate for each weight, and 
∂𝐸[𝑡]

∂𝑤𝑖,𝑗[𝑡]
 

is partial derivative of 𝐸[𝑡] with respect to 𝑤𝑖,𝑗[𝑡]. Based on 

(7), weights 𝑤𝑖,𝑗[𝑡]  are updated sequentially to minimize 

evaluate function 𝐸[𝑡]  whilethe learning of the RNN model 

proceeds. However, learning performance depends on the 

value of the learning rate 𝜇. When the learning rate 𝜇 is too 

small, the speed to improve the estimation accuracy by the 

RNN becomes slow. When the learning rate 𝜇  is too large, 

convergence stability andestimation accuracy using the RNN 

model cannot be guaranteed. Therefore, we analyzed the 

stability of learning theoretically and derived the optimum 

learning rate 𝜇 based on the analysis. In the nextsection, the 

stability analysis is described in detail. 

 

Fig. 5. Flowchart of the proposed scheme 

III. STABILITY ANALYSIS AND OPTIMIZATION OF THE  

LEARNING RATE 

 In this section, the stability of the learning algorithm is 

analyzed based on Lyapunov analysis [25]. The Lyapunov 

analysis is used to analyze the stability of systems based on the 

Lyapunov function 𝐿(𝑡) . From the Lyapunov’s stability 

theorem, if the time derivative of Lyapunov function �̇�(𝑡) 

takes negative value, the system became stable. In the discrete-

time system, the differential of Lyapunov function 𝛥𝐿[𝑡] =
𝐿[𝑡 + 1] − 𝐿[𝑡]  is used to analyze the stability. Also, the 

squared error between the system output and the desired signal 

can be applied as the Lyapunov function. Thus, we applied 

Lyapunov function 𝐸[𝑡] for the stability analysis in our RNN 

model. The error between training data 𝑦[𝑡] and the output of 

the RNN model �̂�[𝑡] are expressed as: 

𝑒[𝑡] = 𝑦[𝑡] − �̂�[𝑡]. (8) 

The Lyapunov function 𝐿[𝑡] can be expressed as 

𝐿[𝑡] =
1

2
(𝑒[𝑡])2. (9) 

From (8) and (9), time differential of Lyapunov function 

𝛥𝐿[𝑡] = 𝐿[𝑡 + 1] − 𝐿[𝑡] can be expressed as 
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𝛥𝐿[𝑡] = 𝐿[𝑡 + 1] − 𝐿[𝑡] 

=
1

2
{(𝑒[𝑡 + 1])2 − (𝑒[𝑡])2} 

=
1

2
{(𝑒[𝑡] + 𝛥𝑒[𝑡])2 − (𝑒[𝑡])2} 

= 𝛥𝑒[𝑡] (𝑒[𝑡] +
1

2
𝛥𝑒[𝑡]) (10) 

Where 𝛥𝑒[𝑡] = 𝑒[𝑡 + 1] − 𝑒[𝑡] denotes the differential of error 

in each time step. Using partial derivative 
𝜕𝑒[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
 and (7), 𝛥𝑒[𝑡] 

can be also expressed as 

 

𝛥𝑒[𝑡] = ∑ ∑ (
𝜕𝑒[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
) (𝑤𝑖,𝑗[𝑡 + 1] − 𝑤𝑖,𝑗[𝑡])

𝑁

𝑗=1

7

𝑖=1

 

= ∑ ∑ (
𝜕𝑒[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
)

𝑁

𝑗=1

7

𝑖=1

(𝑤𝑖,𝑗[𝑡] − 𝜇𝑖,𝑗

𝜕𝐸[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
− 𝑤𝑖,𝑗[𝑡]) 

= − ∑ ∑ 𝜇𝑖,𝑗 (
𝜕𝑒[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
) (

𝜕𝐸[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
)

𝑁

𝑗=1

7

𝑖=1

.                     (11) 

 

Here, the relationship between partial differential 
𝜕𝐸[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
and 

𝜕𝑒[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
 can be expressed as 

 
𝜕𝐸[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
= 𝑒[𝑡]

𝜕𝑒[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
. (12) 

 

From (11) and (12), supposing 𝑒[𝑡] ≠ 0, the differential 𝛥𝑒[𝑡] 
can be re-written as 

 

𝛥𝑒[𝑡] = − ∑ ∑
𝜇𝑖,𝑗

𝑒[𝑡]

𝑁

𝑗=1

(
𝜕𝐸[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
)

27

𝑖=1

 

= −
1

𝑒[𝑡]
𝒒𝑻𝝁 (13) 

 

where 𝒒 = [𝑞1,1, 𝑞1,2, … , 𝑞1,𝑁 , 𝑞2,1, … , 𝑞7,𝑁]
𝑇

, 𝑞𝑖,𝑗 =

(
𝜕𝐸[𝑡]

𝜕𝑤𝑖,𝑗[𝑡]
)

2

,and 𝜇 = [𝜇1,1, 𝜇1,2, … , 𝜇1,𝑁 , 𝜇2,1, … , 𝜇7,𝑁]
𝑇
 

respectively. From (13) and (10), the differential of the 

Lyapunov function 𝛥𝐿[𝑡] = 𝐿[𝑡 + 1] − 𝐿[𝑡] can be re-written 

as 

 

𝛥𝐿[𝑡] = −
1

𝑒[𝑡]
𝒒𝑻𝝁 (𝑒[𝑡] −

1

2

1

𝑒[𝑡]
𝑞𝑇𝜇) 

= −
1

(𝑒[𝑡])2
𝒒𝑻𝝁 ((𝑒[𝑡])2 −

1

2
𝑞𝑇𝜇) 

=
1

4𝐸[𝑡]
𝒒𝑻𝝁(𝒒𝑻𝝁 − 4𝐸[𝑡]). (14) 

 

Therefore, from (14), the condition to guarantee stability of the 

RNN can be expressed as 

0 ≤ 𝒒𝑻𝝁 ≤ 4𝐸[𝑡]. (15) 

 Here, (14) can be transformed to 

𝛥𝐿[𝑡] =
1

4𝐸[𝑡]
𝝁𝑻𝑸𝝁 − 𝒒𝑻𝝁. (16) 

where 𝑸 = 𝒒𝒒𝑻 . Preventing from decreasing speed of the 

evaluation function, 𝛥𝐿[𝑡] is desired tominimize in each time 

step. Then, solving the formula 
𝜕𝛥𝐿[𝑡]

𝜕𝜇
= 0 using (16), the 

optimum learning rate 𝜇∗ can be expressed as follows: 

𝜇∗ = 2𝐸[𝑡]𝑸−𝟏𝒒. (17) 

 In this paper, we updated learning rate 𝜇adaptively based on 

(17). 

IV. PERFORMANCE EVALUATION AND DISCUSSIONS 

A. Condition of Evaluations 

 In this section, some evaluations to confirm the prediction 

accuracy of our proposal are performed. Thus, the BIS 

behaviors of 12 patients are simulated to evaluate the 

efficiency of our proposal. To simulate the true BIS value for 

each patient, the Schnider and Minto model [17] was applied. 

Also, the parameter sets used in [12] were applied as the 

simulation parameter of each 12 patients. 

TABLE II. SIMULATION PARAMETERS 

Simulation time [min.] 70 

Sampling Period Ts [sec.] 5 

Gain of the PID controller   

Proportional Gain: Kp, 0.055, 

Integral Gain: Ki, 0.001 

Derivative Gain: Kd 2.68 

Target BIS value in the control 50 

Learning rate in the conventional 0.50, 1.00, 5.00 

Number of GRU in hidden layer 

N (the size of weight vectors) 9 

Number of hidden layers 1 

 Table 2 shows the simulation parameters. In the simulation, 

it is assumed that the sampling period of the BIS value from 

the BIS monitor to be 5.0 second, which is the same as the BIS 

monitor used in [10]. The dosages in each time step were 

controlled by the a PID control with a target BIS value of 50. 

The gain of the PID controller was decided based on Ziegler-

Nichols' method [27] that is one of the typical methods to 

decide the gain. Furthermore, to evaluate the efficiency of our 

proposed system compared the prediction performance of our 

proposed system that of the conventional scheme. The 

conventional scheme used fixed learning rate to update its 

network parameters. 

 We evaluated the estimated BIS value, the absolute error 

between estimated BIS value, and the true BIS value. The 

mean absolute error (MAE) during surgery which denotes the 

average of absolute error over a period of time was also 

evaluated. The MAE is defined as follows: 

𝑀𝐴𝐸 =
1

𝑇
∑ |𝐵𝐼𝑆[𝑡] − 𝐵𝐼�̂�[𝑡]|

𝑇

𝑡=1

(18) 

where, 𝑇  denotes the number of samples. Also, in the 

simulation, we defined allowable absolute error as 7.5 

considering, taking into account the target BIS value (50.0) and 

the desired range with margin (42.5 and 57.5) [10]. 

B. Simulation Results and Discussions 

 Here, the simulation results in the introduction period is 

described. The MAE of this period is shown in Table 3. The 

MAE values in the proposal are lower than that of conventional 

in all patients. For example, in evaluation of Patient 10, the 
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MAE value in the proposal takes 0.05, and that is the lowest 

value in the simulation. 

 

TABLE III. RESULT OF THE MEAN ABSOLUTE ERROR 

Patient 

ID 
Proposal µ= 0.50 µ= 1.00 µ= 5.00 

1 0.09 0.57 0.36 5.36 

2 0.11 0.79 0.55 5.33 

3 0.09 0.75 0.52 0.24 

4 0.11 0.29 0.17 4.63 

5 0.08 0.43 0.27 1.23 

6 0.08 0.59 0.41 0.18 

7 0.07 0.44 0.28 0.11 

8 0.1 0.41 0.28 0.17 

9 0.12 0.49 0.34 0.18 

10 0.05 0.44 0.29 0.12 

11 0.06 0.24 0.14 0.07 

12 0.07 0.4 0.24 3.39 

 Fig.  6 shows the transition of the BIS value of the Patient 10. 

From Fig. 6, it can be seen that the estimated BIS value from 

the proposed scheme (i.e., the blue line) is closer to the true 

value (i.e., the dotted line) than that of the conventional 

scheme. On the other hand, the estimated BIS values by all 

conventional seem to be closed slower to the true value 

compared to the proposal. Fig.  7 shows the absolute error 

between the estimated BIS value by the RNN model and the 

true value. 

 
Fig.  6.  Transition of the BIS value in the Patient 10 

 
Fig.  7. Transition of absolute error in the Patient 10 

From Fig. 7, we confirmed that the absolute error in the 

proposal (i.e., the blue line) always takes lower than 4.0. The 

maximum absolute error in the all conventional higher than 

that of our proposal. In particular, in the case learning rate is 

fixed to 0.50, the value of absolute error takes higher than 6.0 

and that closes to the allowable error in the simulation (i.e., 

broken line). From those results, we confirmed that the 

efficiency of our proposed scheme was superior to the scheme 

with a fixed learning rate. 

 
Fig.  8. Transition of the BIS value in the Patient 1 

 Next, from Table 3, in the case that learning rate is fixed to 

5.00, we confirmed that the MAE takes 5.36 in the evaluation 

in Patient 1. It is the highest value of all the patients. Fig. 8 

shows the transition of the BIS value of the Patient 1. From Fig. 

8, the estimated BIS value by the proposed scheme (i.e., the 

blue line) seems to be closer to the true value (i.e., the dotted 

line) than that of the conventional scheme. Also, we confirmed 

that the estimated BIS value when the learning rate is fixed to 

5.00 began to oscillate from about 20 minutes. 

 
Fig.  9. Transition of absolute error in the Patient 1 

Fig.  9 shows the absolute error between the estimated BIS 

value of the RNN model and true value. From Fig. 9, we 

confirmed that the absolute error in the proposal (i.e., the blue 

line) always takes less than 5.00, while the maximum absolute 

error in the all conventional takes higher than allowable 

absolute error in the simulation (i.e., broken line).  Also, in the 

case that learning rate is fixed to 5.00, we confirmed that the 

absolute error become higher from about 20 minutes. From 

those results, we confirmed that our proposed scheme 

demonstrated higher performance compared to the 

conventional scheme. Especially, we confirmed that 

optimization of the learning rate can prevent unstable state of 

the outputs of the RNN. 
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CONCLUSION 

 This paper proposes a learning scheme for the prediction 

model of the anesthetic drug effect using RNN with GRU. 

Thus, the stability of the RNN model is analyzed using 

Lyapunov analysis, and the optimum learning rate for each 

parameter of the RNN model is derived. The prediction 

performance of our proposed scheme is compared to the 

conventional scheme with a fixed learning rate by the 

computer simulation. From the numerical result, it is confirmed 

that our proposed scheme achieves higher perdition 

performance than the conventional scheme.  

 As for the future research, the effective control scheme of 

anesthesia using the RNN model learned with our proposed 

scheme should be considered. In addition, whether our 

proposed scheme can be applied to similar applications should 

be considered, for example, the application to predict the effect 

of insulin for Diabetes. 
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