
International Journal of Trend in Research and Development, Volume 5(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar - Apr 2018
Available Online@www.ijtrd.com 37

Implementation of True Random Number Generator

Using FPGA Based System

1
Dr. N. G. Narole,

2
Kshanada B. Choudhary,

1
HOD,

2
Research Scholar,

1
Department of Electronics & Telecommunication Engineering,

2
Department of Electronics Engineering,

12
Rajiv Gandhi College of Engineering & Research, Nagpur, India

Abstract— Cryptographic systems have become an integral

part of our daily life through the need of security activities

such as communication, electronic money systems, disc

encryptions. Random numbers is a key component for

strengthening and securing the confidentiality of electronic

communications and used in many cryptographic applications

like key generation, encryption, masking protocols, internet

gambling. Unpredictable random numbers are essential for the

security of cryptographic algorithms for generating the

underlying secret keys. TRUE random number generators

(TRNGs) have become an vital component in many

cryptographic systems, including PIN/password generation,

authentication protocols, key generation, random padding, and

nonce generation. The circuit utilizes undetermined random

process, usually in the form of electrical noise, as a basic

source. Field programmable gate arrays (FPGAs) form an ideal

platform for hardware implementations of many of these

security algorithms. Proposed TRNG is based on the principle

of beat frequency detection for Xilinx-FPGA-based

applications.

Keywords—True random number generator (TRNG),

Cryptography, Field programmable gate arrays (FPGA), Bit

frequency detection (BFD), Dynamic reconfiguration port

(DRP).

I. INTRODUCTION

In today„s world security is of highest importance and hence

cryptography plays an important role in computer and

networking security. Cryptography is a set of techniques for

hiding information. It is employed in several fields as part of

security protocols to secure classified information and data.

Communication, being an integral part of life, including the

internet and other means of communication has given rise to

security threats. Cryptography thus provides the necessary

protection from the threats by protecting the data, i.e.

providing different means and methods of converting data into

an unreadable form. The basic aim of cryptography is that the

unauthorized user can not accessed data. The content of the

data frames should be encrypted with definite pattern. Another

application is to ensure that the data must always be

acknowledged by the originator of the message.

Random numbers are essential to security because

cryptographic systems depend on the existence of some secret

data known to authorized users and unpredictable by others

and most often random strings are employed to warrant its

unpredictability (e.g., in keys, salts, nounces, challenges,

initialization vectors, and other one-time quantities)[1].

Cryptographically protected random number generators are

important for this purpose. A random number generator is a

computational device designed to generate a string of numbers.

Methods for generating random has been used from ancient

times, including dice, coin flipping, the shuffling of playing

cards, the use of yarrow stalks, and many other techniques.

There are number of random number generation schemes and

Random Number Generators actively used in IT security

products. The random numbers generated should be truly

random, else they can significantly weaken the security

system. They should unpredictable. It has to be designed with

a good cryptographic quality. It should be uniformly

distributed on a given range and should not be dependent on

each other. Thus there is a need for an ideal RNG that satisfies

all these requirements [3].Cryptographic quality is achieved by

random numbers that satisfy the requirements of cryptographic

algorithms.

Random number generators can be classified as either pseudo

random number generators or true random number generators.

A pseudo random number generator produces a stream of

numbers that appears to be random but actually follow

predefined sequence. A true random number generator

produces a stream of unpredictable numbers that have no

defined pattern[3].

1. True Random Number Generators:

There are three commonly used techniques, namely

(i)oscillator sampling, (ii)direct amplification and (iii)discrete

time chaos. In the oscillator sampling approach, period

conversions (i.e. oscillator jitter) in a low frequency clock of

low quality factor (Q) is developed by using it to sample a high

frequency clock. The direct amplification technique digitizes

thermal or shot noise, using a amplifier and comparator.

Finally, chaotic systems can be used to produce TRNGs[11].

It is well known that starting with a good mathematical

concept (like a LFSR), someone can build a random number

generator, called a Pseudo Random Number Generator

(PRNG), obtaining the same randomness test results as a good

True Random Number Generator (TRNG). In this generator

output is a function of the previous one. In most of the cases it

can become the greatest vulnerability of the whole

cryptographic system. This is why a TRNG consists of three

main components as described in Fig. 1.

Fig 1. Main components of TRNG

The noise generator is the black box used for generating

random sequences. It is based on different kind of physical

unpredictable phenomenon, like cosmic radiations, oscillators

jitter, sound and light propagation throughout different

environments, etc. The randomness extraction box is used to

aid the generator to uniformly distribute the 0 and 1 bits along

International Journal of Trend in Research and Development, Volume 5(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar - Apr 2018
Available Online@www.ijtrd.com 38

the output[2].The Randomness Testing block consists of a set

of statistical tests, used for testing the randomness of the

output. The last two blocks are based on purely mathematical

concepts.

2. Pseudorandom Number Generators:

There are many methods to generate pseudorandom sequences,

and the classical software based methods, all of which can be

implemented in hardware. A common method of producing a

PRNG is to use the output of a linear feedback shift register

(LFSR)[11].The linear feedback shift register (LFSR) is a

common building block for implementing a pseudo-random

number generator (PRNG) since it can be compactly

constructed from a series of cascaded flip-flops and a few

XOR gates. However, the LFSR is generally inadequate by

itself for generating high quality random number sequences. Its

linear behavior allows an encryption key to be easily recovered

if it is used as keystream generator[8]. Although this technique

has good statistical properties and leads to very efficient

hardware implementations, the Berlekamp–Massey algorithm

can be used to efficiently deduce the connection polynomial

from the LFSR‟s output sequence, making it unsuitable for

cryptographic applications[11].

Classes of TRNG:

There are two main classes of TRNG are (i)thermal noise

based and(ii) chaotic circuit based as shown in Fig 2.

(i) The thermal noise generator amplifies the noise made by

electrons flowing into a resistor and converts the noise to a

random number. The signal level of the thermal noise is below

1mV, making this approach more susceptible to digital

switching noise injection (not random, data dependent) in a

large-scale SoC. However, the source of noise used in the

thermal RNG (white noise caused by electron moving in the

resistor) is truly random and adds to the robustness of the

TRNG.

Fig 2. Classes of TRNG

(ii) A chaotic TRNG exploits the unpredictable nature of

chaotic oscillators to generate random numbers. Progress in the

nonlinear system theory proved that chaotic circuits can be

considered truly random. The signal level in a chaotic

oscillator can be made much higher that in the thermal TRNG.

Hence the Signal to Noise Ratio (SNR) is improved,

minimizing data dependency. The system minimizes the effect

of supply and substrate noise by combining the 2 non-

correlated outputs of both TRNG with an XOR gate (Figure 1)

and also by circuit techniques like cascading. Since the transfer

function from the supply to the output is different for each

circuit and the 2 TRNG use different noise sources to generate

the random bits, the 2 bit streams are not correlated[9].

FPGA is used increasingly because of its advantages in

performance, design time, power consumption, flexibility, cost

or chip area over other systems based on microprocessor, DSP

or VLSI. With a FPGA-based random number generation,

many cryptographic applications can be effectively

implemented using FPGA[10]. Over the decade, many TRNGs

have been proposed. For example, Tsoi and Leung[11]

proposed a FPGA-based TRNG based on the oscillator phase

noise. In their proposal, a high-quality random bit stream can

be generated by sampling an accurate high-frequency clock

using a ring oscillator formed by gates in the FPGA together

with external resistors and capacitors. However, the maximum

output date rate of the generator is only 4.7Kbps which is not

high enough for many cryptographic applications. Besides, the

TRNG can be easily tampered with because it has external

components. In Epstein and Hars,[12] a TRNG based on

digital circuit metastable event was presented. However, the

proposed generator can only be successfully implemented in

some lowend digital integrated circuits but not in modern

FPGAs because CMOS circuits in modern FPGAs are so fast

that the probability of a metastable event occurring in any gate

in the FPGAs is very small.

Reconfigurable devices have become an integral part of many

embedded digital systems, predicted to become the platform of

choice for general computing in the near future. Being primary

prototyping devices, reconfigurable systems including FPGAs

are widely involved in cryptographic applications, as they can

provide acceptable to high processing rate at much lower cost

and faster design cycle time [4].

FPGAs being flexible in terms of programming and

implementation of several algorithms and functions have been

employed for implementing cryptographic algorithms for quite

a long time. They are widely used in encryption and R&D

applications. FPGAs provide performance flexibility and

benefits being compared to applications specific integrated

circuit (ASICs). Conventionally, ASICs was used more for the

cryptographic implementations [3]. Later, due to greater

flexibility and reprogram ability, it has become easier to

modify algorithms and program them on FPGAs. The

development of an algorithm is faster and allows for a shorter

time to exchange on FPGA.

Focus is to design an improved field-programmable gate array

(FPGA) based TRNGs, using purely digital components. Using

digital building blocks for TRNGs has the advantage that the

designs are relatively simple and well suited to the FPGA

design flow, as they can suitably leverage the CAD software

tools available for FPGA design. However, digital circuits

exhibit comparatively limited number of sources of random

noise, e.g., metastability of circuit elements, frequency of free

running oscillators, and jitters (random phase shifts) in clock

signals.

Because of its flexibility and fast time to market, FPGA has

become a popular platform for implementing many

cryptographic systems that include TRNGs as an essential

block. It is essential to develop new FPGA TRNG solutions

because: (i) not all the hardware TRNG methods available for

ASICs or other platforms are adaptable to FPGA

implementation; (ii) the existing FPGA TRNGs have some

shortcomings in terms of the throughput-per-unit-area and can

be improved; and (iii) active component attacks as well as

changes in operational conditions such as variations in

temperature and voltage supply may bias and disturb the

random property TRNGs output bitstream. Since most of the

TRNGs operate in an open-loop fashion, it is important to

incorporate a mechanism to constantly provide a feedback

signal to adaptively adjust the TRNG system parameters to

International Journal of Trend in Research and Development, Volume 5(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar - Apr 2018
Available Online@www.ijtrd.com 39

increase its output bit randomness[7]. A relatively recent

enhancement to FPGA capabilities is Dynamic Partial

Reconfiguation (DPR) or Runtime Partial Reconfiguration

(RPR). It is the ability to modify (mostly through the addition

of functionality) the existing circuit on the FPGA, through

“partial reconfiguration” (PR) of the FPGA at run time. DPR

allows designer to use smaller devices, reduce power

consumption and improve system upgradability. DPR allows

modifications to predefined portions of the FPGA logic fabric

on-the-fly, without affecting the normal functionality of the

FPGA.

TRNG circuit implementation for Xilinx-FPGA-based

applications, which has a tunable jitter control capability based

on dynamic partial reconfiguration (DPR) available on Xilinx

FPGAs. Design techniques exist to prevent any malicious

manipulations via DPR which in other ways may affect the

security of the system termed as Hardware Trojan Insertion

[4].

II. BACKGROUND OF PROPOSED WORK

This section briefly describes the basic Single-Phase

BFDTRNG Model:

The BFD-TRNG circuit [5] is a fully digital TRNG, which

relies on jitter extraction by the BFD mechanism, originally

implemented as a 65-nm CMOS ASIC. The structure and

working of the basic BFD-TRNG can be summarized as

follows, in conjunction with Fig.3.

Fig 3. Basic principle of BFD-TRNG circuit.

1. The circuit consists of two quasi-identical ring oscillators

(let us term them as A and B), with similar construction and

placement. Due to inherent physical randomness originating

from process variation effects associated with deep sub

micrometer CMOS manufacturing, one of the oscillators (e.g.,

A) oscillates slightly faster than the other oscillator (B). In

addition, the authors [5] proposed to employ trimming

capacitors to further tune the oscillator output frequencies.

2. The output of one of the oscillators is used to sample the

output of the other, using a D flip-flop (DFF). Without loss of

generality, assume that the output of A is fed to the D-input of

the DFF, while the output of B is connected to the clock input

of the DFF.

3. At certain time intervals (determined by the frequency

difference of the two oscillators), the faster oscillator signal

passes, catches up, and overtakes the slower signal in phase.

Due to random jitter, these capturing events happen at random

intervals, called “beat frequency intervals.” As a result, the

DFF outputs a logic-1 at different random instances.

4. A counter is controlled by the DFF increments during the

beat frequency intervals and gets reset due to the logic-1

output of the DFF. Due to the random jitter, the free running

counter output rises to different peak values in each of the

count-up intervals before getting reset.

5. The output of the counter is sampled by a sampling clock

before it reaches its maximum value.

6. The sampled response is then serialized to obtain the

random bit stream.

One limitation of BFD-TRNG circuit is[14] that its statistical

random property is dependent on the design quality of the ring

oscillators. Any design bias in the ring oscillators might

critically affect the statistical random property of the bit stream

generated by the TRNG. Designs with the same number of

inverters but different placements resulted in changes in

counter maximas.

The following are some techniques to eliminate the above

problem during implementation on FPGA.

A. Random source:

Most FPGAs embed Digital Clock Manager (DCM) modules

providing a wide range of powerful clock management

features such as clock-deskew, frequency synthesis and phase

shifting. In frequency synthesis, the DCM can generate a wide

range of output clock frequencies by performing flexible clock

multiplication and division of an input clock [13].Since Delay-

Locked Loops (DLL) is used in the frequency synthesis, jitter

in the period of the clock generated is inevitable. For example,

according to the Xilinx FPGA data sheet, if the parameters for

the frequency synthesis are chosen carefully, we can generate

an output clock with a large period jitter which can be treated

as a random source for the generation of random numbers.

B. Randomness extraction from the DLL-generated clock

jitter:

The basic principle behind our method is to extract the

randomness from the period jitter of a DLL-generated clock

synthesized by a DCM in a FPGA. The jitter in the DLL

generated clock, F1 is exploited by using it to sample an

accurate high-frequency reference clock, Fh. Since the duty

cycle of Fh may not be 50%, Fh will have unequal probability

of being zero and one, leading the output random bit stream to

be biased to either zero or one. Besides, if period jitter in F1 is

not large enough (compared to the period of Fh), there will be

correlation between the sampled bits and so the output random

bit stream can be predicted to some extent from its previous

bits. To remove the biases and correlation in the output,

different kinds of de-skewing techniques such as parity filter,

Von Neumann de-skew filter and strong mixing [13].

III. PROPOSED ARCHITECTURE

DCM can generate a wide range of output clock frequencies by

performing flexible clock multiplication and division of an

input clock. Since Delay-Locked Loops (DLL) is used in the

frequency synthesis, jitter in the period of the clock generated

is inevitable. For example, according to the Xilinx FPGA data

sheet, if the parameters for the frequency synthesis are chosen

carefully, we can generate an output clock with a large period

jitter which can be treated as a random source for the

generation of random numbers [10].

International Journal of Trend in Research and Development, Volume 5(2), ISSN: 2394-9333

www.ijtrd.com

IJTRD | Mar - Apr 2018
Available Online@www.ijtrd.com 40

Figure 4: Proposed Architecture

Fig. 4 shows the overall architecture of the proposed TRNG. In

place of two ring oscillators, two DCM modules generate the

oscillation waveforms. In the proposed design, the source of

randomness is the jitter The DCM modules allows increased

designer control over the clock waveforms, and their use

eliminates the need for initial calibration [5]. Tunability is

established by setting the DCM parameters on-the-fly using

DPR capabilities using DRP ports. This capability provides the

design greater flexibility than the ring-oscillator-based BFD

TRNG. The difference in the frequencies of the two generated

clock signals is captured using a DFF. The DFF sets when the

faster oscillator completes one cycle more than the slower one

(at the beat frequency interval). One of the generated clock

signals applied to counter and the counter is reset when the

DFF is set. Effectively, the counter increases the process of the

generated random numbers.

CONCLUSION

The randomness of BFD-TRNG depend on the design quality

of the ring oscillators. As the ring oscillators are free running it

is difficult to design and implement the circuit on FPGA

platform with same number of inverters at different

placements. Our goal is to design, analyze, and implement an

easy-to-design, improved, low- overhead, and tunable TRNG

for the FPGA platform. Proposed architecture allows on-the-

fly tuning ability of statistical qualities of a TRNG by utilizing

DPR capabilities of modern FPGAs for changing the digital

clock manager (DCM) modeling parameters. Xilinx clock

management tiles (CMTs) contain a dynamic reconfiguration

port (DRP) which allows DPR to be performed through much

simpler means.

References

[1] Sergio Callegari “Evaluation of a couple of True Random

Number Generators with liberally licensed

hardware,firmware, and drivers”, IEEE, 2015.

[2] Andrei Marghescu, Paul SvastaInto “Generating True

Random Numbers - a Practical Approach using

FPGA”,IEEE 21st SIITME, 2015.

[3] Prassanna Shanmuga Sundaram, “Development of a

FPGA-based True Random Number Generator for Space

Applications,” Master thesis in Electronics Systems at

Linköping Institute of Technology.

[4] P. Johnson, R. S. Chakraborty, and D. Mukhopadhyay,

“A PUF enabled secure architecture for FPGA- based IoT

applications,” IEEE Transactions on Multi- Scale

Computing Systems., vol. 1, no. 2, April–June 2015.

[5] Q. Tang, B. Kim, Y. Lao, K. K. Parhi, and C. H. Kim,

“True random number generator circuits based on single-

and multi-phase beat frequency detection,” in Proc. IEEE

Custom Integr. Circuits Conf., Sep. 2014.

[6] J. Von Neumann, “Various techniques used in connection

with random digits,” Nat. Bureau Standards Appl. Math.

Ser., vol. 12.

[7] Mehrdad Majzoobi and Farinaz Koushanfar and Srinivas

Devadas, “FPGA-based True Random Number

Generation using Circuit Metastability with Adaptive

Feedback Control”, Massachusetts Institute of

Technology, CSAIL Cambridge.

[8] Juan C. Cerda, Chris D. Martinez, Jonathan M. Comer,

and David H.K. Hoe, “An Efficient FPGA Random

Number Generator using LFSRs and Cellular Automata”,

IEEE, 2012.

[9] Vincent von Kaenel, Toshinari Takayanagi, “Dual True

Random Number Generators for Cryptographic

Applications Embedded on a 200 Million Device Dual

CPU SoC”, IEEE Custom Intergrated Circuits Conference

(CICC), 2007.

[10] Sammy H. M. Kwok, Edmund Y. Lam, “FPGA-based

High-speed True Random Number Generator for

Cryptographic Applications”, IEEE, 2016.

[11] K. H. Tsoi and K. H. Leung, "Compacted FPGA-based

and Pseudo Random Generators", Proc. of the 11th

Annual IEEE Symposium on Field- Programmable

Custom computing Machines (FCCM'03), 2003.

[12] Michael Epstein and Laszlo Hars, "Generator based on

Digital Circuit Artifacrts", Proc. of CHES 2003, LNCS

2779, pp. 152-165, 2003.

[13] Eastlake, Corker & Schiller, "Randomness

recommendations for Security", RFC 1750, Dec. 1994.

[14] Anju P. Johnson, Rajat Subhra Chakraborty, “An

Improved DCM Based Tunable True Random Number

Generator for Xilinx FPGA”, IEEE transaction on circuits

and systems -II, vol. 64, no. 4, april 2017.

